{"title":"Verifying Certificate Revocation Status for Short Key Lengths in Vehicle Communication Systems","authors":"Eun-Gi Kim","doi":"10.53759/7669/jmc202404046","DOIUrl":null,"url":null,"abstract":"This paper proposes and analyzes a ticket-based OCSP protocol for efficient certificate revocation checking in vehicle communication systems. The IEEE WAVE standard for vehicular networks requires real-time processing of Basic Safety Messages (BSMs) exchanged between vehicles. Traditional OCSP revocation checking can introduce delays. The proposed approach distributes OCSP responses as tickets valid for a road section. Vehicles use shorter keys extracted from the tickets for faster cryptographic processing. Experiments compare processing times for signature generation and verification with different elliptic curves. The results show the proposed technique provides faster revocation checking. This allows time-critical vehicle-to-vehicle message processing at high rates under computational constraints. The ticket-based OCSP mechanism enhances security while meeting real-time requirements in vehicular networks.","PeriodicalId":516221,"journal":{"name":"Journal of Machine and Computing","volume":"10 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202404046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes and analyzes a ticket-based OCSP protocol for efficient certificate revocation checking in vehicle communication systems. The IEEE WAVE standard for vehicular networks requires real-time processing of Basic Safety Messages (BSMs) exchanged between vehicles. Traditional OCSP revocation checking can introduce delays. The proposed approach distributes OCSP responses as tickets valid for a road section. Vehicles use shorter keys extracted from the tickets for faster cryptographic processing. Experiments compare processing times for signature generation and verification with different elliptic curves. The results show the proposed technique provides faster revocation checking. This allows time-critical vehicle-to-vehicle message processing at high rates under computational constraints. The ticket-based OCSP mechanism enhances security while meeting real-time requirements in vehicular networks.