{"title":"Calendar life enhancement of commercial ultra-high-rate LiFePO4/graphite batteries for electromagnetic launch","authors":"Xinlin Long, Lang Liu, Ziqing Zeng","doi":"10.1115/1.4065279","DOIUrl":null,"url":null,"abstract":"\n Due to the advantages of ultra high power density, long cyclic life and desirable safety, ultra-high-rate LiFePO4/graphite batteries(U-LIBs) are used as the energy storage system for electromagnetic launcher. However, the short calendar life of U-LIB limits its further application in the field of electromagnetic launch. In this study, the calendar life of commercial U-LIB is improved through the optimization design of anode materials and electrolyte. The calendar life is successfully improved without affecting the battery performances by appropriately increasing the particle size of graphite in the anode and properly reducing the proportion of dimethyl carbonate (DMC) which has low stability in the electrolyte. The average particle size of graphite is increased from 5 µm to 8 µm with a compaction density of 1.3 g cm−3 as the best option. The electrolyte formulation is optimized from 30% ethylene carbonate (EC), 60% DMC, 10% ethyl methyl carbonate (EMC) to 30% EC, 50% DMC, 20% EMC. After comprehensive optimization, the calendar life of commercial U-LIB was significant improved at different temperature and state of charge(SOC). For example, the one-month-storage capacity retention of U-LIB increased from 96.9% to 98% under the temperature of 45°C at 50%SOC (meaning 35.5% decrease on capacity loss), and increased from 98.2% to 98.8% under the temperature of 25°C at 100%SOC (33.3% decrease on capacity loss).","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"63 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the advantages of ultra high power density, long cyclic life and desirable safety, ultra-high-rate LiFePO4/graphite batteries(U-LIBs) are used as the energy storage system for electromagnetic launcher. However, the short calendar life of U-LIB limits its further application in the field of electromagnetic launch. In this study, the calendar life of commercial U-LIB is improved through the optimization design of anode materials and electrolyte. The calendar life is successfully improved without affecting the battery performances by appropriately increasing the particle size of graphite in the anode and properly reducing the proportion of dimethyl carbonate (DMC) which has low stability in the electrolyte. The average particle size of graphite is increased from 5 µm to 8 µm with a compaction density of 1.3 g cm−3 as the best option. The electrolyte formulation is optimized from 30% ethylene carbonate (EC), 60% DMC, 10% ethyl methyl carbonate (EMC) to 30% EC, 50% DMC, 20% EMC. After comprehensive optimization, the calendar life of commercial U-LIB was significant improved at different temperature and state of charge(SOC). For example, the one-month-storage capacity retention of U-LIB increased from 96.9% to 98% under the temperature of 45°C at 50%SOC (meaning 35.5% decrease on capacity loss), and increased from 98.2% to 98.8% under the temperature of 25°C at 100%SOC (33.3% decrease on capacity loss).
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.