首页 > 最新文献

Journal of Electrochemical Energy Conversion and Storage最新文献

英文 中文
Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage 黑色-Fe2O3 多面体组装三维薄膜电极具有更强的导电性和能量密度,可用于水体固态储能
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-29 DOI: 10.1115/1.4064380
Yi Xing, Xiaoyu Sun, Wentian Chen, Xiaoqing Ma, Zirui Huang, Minglian Li, Wenfeng Guo, Yuqian Fan
The construction of advanced Fe2O3 materials with high energy density for energy storage faces challenges due to the defects of conventional widely-known red-brown Fe2O3 such as poor electronic conductivity and insufficient physical/chemical stability. Unlike previous work, we successfully synthesize a novel black Fe2O3 (B-Fe2O3) thin film electrode by adopting simple hydrothermal strategy. Physical characterizations indicate that the as-made B-Fe2O3 product is composed of polyhedrons (mainly exhibit 4-8 sides) with a micrometer grade size range. Besides, the Fe-based thin film electrode with this 3D structure has stronger affinity and high electronic conductivity. As anode of aqueous solid-state energy storage devices, the as-synthesized B-Fe2O3 film electrode exhibits excellent volume energy density of 14.349 kWh m−3 at power density of 1609 kW m−3, which is much higher than the best result of previous works (∼8 kWh m−3). This study may provide new insights into the development of the Fe2O3 series on developing high-efficiency Fe-based anode materials for solid-state energy storage.
由于传统的广为人知的红棕色 Fe2O3 存在电子导电性差、物理/化学稳定性不足等缺陷,因此用于储能的高能量密度先进 Fe2O3 材料的构建面临挑战。与以往工作不同的是,我们采用简单的水热法成功合成了一种新型黑色 Fe2O3(B-Fe2O3)薄膜电极。物理特性表明,制得的 B-Fe2O3 产品由多面体组成(主要表现为 4-8 边),尺寸范围为微米级。此外,这种三维结构的铁基薄膜电极具有更强的亲和力和更高的电子传导性。作为水基固态储能装置的阳极,合成的 B-Fe2O3 薄膜电极在功率密度为 1609 kW m-3 的情况下,体积能量密度达到 14.349 kWh m-3,远高于之前研究的最佳结果(∼8 kWh m-3)。这项研究可为开发用于固态储能的高效铁基负极材料提供新的见解。
{"title":"Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage","authors":"Yi Xing, Xiaoyu Sun, Wentian Chen, Xiaoqing Ma, Zirui Huang, Minglian Li, Wenfeng Guo, Yuqian Fan","doi":"10.1115/1.4064380","DOIUrl":"https://doi.org/10.1115/1.4064380","url":null,"abstract":"The construction of advanced Fe2O3 materials with high energy density for energy storage faces challenges due to the defects of conventional widely-known red-brown Fe2O3 such as poor electronic conductivity and insufficient physical/chemical stability. Unlike previous work, we successfully synthesize a novel black Fe2O3 (B-Fe2O3) thin film electrode by adopting simple hydrothermal strategy. Physical characterizations indicate that the as-made B-Fe2O3 product is composed of polyhedrons (mainly exhibit 4-8 sides) with a micrometer grade size range. Besides, the Fe-based thin film electrode with this 3D structure has stronger affinity and high electronic conductivity. As anode of aqueous solid-state energy storage devices, the as-synthesized B-Fe2O3 film electrode exhibits excellent volume energy density of 14.349 kWh m−3 at power density of 1609 kW m−3, which is much higher than the best result of previous works (∼8 kWh m−3). This study may provide new insights into the development of the Fe2O3 series on developing high-efficiency Fe-based anode materials for solid-state energy storage.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" 21","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139144153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Review of Hydrogen Production via Seawater Electrolysis and Desalination: Evaluating Current Practices 海水电解和脱盐制氢批判性评论:评估当前做法
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-29 DOI: 10.1115/1.4064381
Giorgos Varras, Michail Chalaris
The pursuit of sustainable and clean energy solutions has led to increased interest in hydrogen as an efficient energy carrier. This paper presents a comprehensive analysis of state-of-the-art technologies for hydrogen production through seawater electrolysis and desalination, addressing the critical need for clean energy generation and sustainable water supply. It emphasizes the importance of hydrogen as a versatile and environmentally friendly energy source, as well as the significance of seawater desalination. The analysis includes a comparison of three electrolysis technologies: solid oxide electrolysis (SOE), alkaline electrolyzers (AE), and proton exchange membrane (PEM) electrolysis. Factors such as energy requirements, capital and maintenance costs, and offshore suitability are considered, facilitating an informed evaluation of the most suitable electrolysis method for seawater hydrogen production. Additionally, three desalination technologies are evaluated: reverse osmosis (RO), thermal desalination, and membrane desalination. The assessment takes into account investment and operation costs, energy demand, and environmental impact, providing insights into the feasibility and sustainability of integrating hydrogen production with seawater desalination. This condensed review provides a holistic perspective on the techno-economic viability, energy efficiency, and environmental sustainability of various technologies, enabling informed decision-making towards a more sustainable and resilient energy-water nexus. Overall, this study contributes to the growing body of knowledge on hydrogen production and seawater desalination, offering insights that can inform strategic planning, policy development, and technological advancements in achieving a greener and more sustainable future.
随着对可持续清洁能源解决方案的追求,人们对作为高效能源载体的氢越来越感兴趣。本文全面分析了通过海水电解和海水淡化制氢的最新技术,以满足清洁能源生产和可持续供水的迫切需要。它强调了氢作为一种多功能环保能源的重要性,以及海水淡化的重要意义。分析包括三种电解技术的比较:固体氧化物电解(SOE)、碱性电解槽(AE)和质子交换膜(PEM)电解。考虑了能源需求、资本和维护成本以及近海适用性等因素,有助于对最适合海水制氢的电解方法进行知情评估。此外,还评估了三种海水淡化技术:反渗透 (RO)、热淡化和膜淡化。评估考虑了投资和运营成本、能源需求和环境影响,深入探讨了将氢气生产与海水淡化相结合的可行性和可持续性。这篇精炼的综述从全局的角度阐述了各种技术的技术经济可行性、能源效率和环境可持续性,从而为实现更具可持续性和复原力的能源与水之间的关系做出了明智的决策。总之,本研究为氢气生产和海水淡化方面不断增长的知识库做出了贡献,提供的见解可为战略规划、政策制定和技术进步提供信息,以实现更加绿色和可持续的未来。
{"title":"Critical Review of Hydrogen Production via Seawater Electrolysis and Desalination: Evaluating Current Practices","authors":"Giorgos Varras, Michail Chalaris","doi":"10.1115/1.4064381","DOIUrl":"https://doi.org/10.1115/1.4064381","url":null,"abstract":"The pursuit of sustainable and clean energy solutions has led to increased interest in hydrogen as an efficient energy carrier. This paper presents a comprehensive analysis of state-of-the-art technologies for hydrogen production through seawater electrolysis and desalination, addressing the critical need for clean energy generation and sustainable water supply. It emphasizes the importance of hydrogen as a versatile and environmentally friendly energy source, as well as the significance of seawater desalination. The analysis includes a comparison of three electrolysis technologies: solid oxide electrolysis (SOE), alkaline electrolyzers (AE), and proton exchange membrane (PEM) electrolysis. Factors such as energy requirements, capital and maintenance costs, and offshore suitability are considered, facilitating an informed evaluation of the most suitable electrolysis method for seawater hydrogen production. Additionally, three desalination technologies are evaluated: reverse osmosis (RO), thermal desalination, and membrane desalination. The assessment takes into account investment and operation costs, energy demand, and environmental impact, providing insights into the feasibility and sustainability of integrating hydrogen production with seawater desalination. This condensed review provides a holistic perspective on the techno-economic viability, energy efficiency, and environmental sustainability of various technologies, enabling informed decision-making towards a more sustainable and resilient energy-water nexus. Overall, this study contributes to the growing body of knowledge on hydrogen production and seawater desalination, offering insights that can inform strategic planning, policy development, and technological advancements in achieving a greener and more sustainable future.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"60 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139146534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internal temperature estimation of lithium-ion battery based on improved electro-thermal coupling model and ANFIS 基于改进电热耦合模型和 ANFIS 的锂离子电池内部温度估算
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-28 DOI: 10.1115/1.4064353
Jianping Wen, Zhensheng Li, Haodong Zhang, Chuanwei Zhang
Accurate estimation of the internal temperature of lithium-ion batteries plays an important role in the development of a suitable battery thermal management system, safeguarding the healthy and safe operation of batteries, and improving battery performance. In order to accurately estimate the internal temperature of the battery, this paper proposes a method for estimating the internal temperature of lithium-ion batteries based on an improved electro-thermal coupling model and an Adaptive Network-based Fuzzy Inference System (ANFIS). First, a parameterization method of the electrical model is proposed, and an electrical model whose parameters are affected by temperature and SOC is established. Second, to overcome the complex nonlinear modeling problem of lithium-ion batteries, the ANFIS thermal model is established. Then, an improved electro-thermal coupling model for lithium-ion batteries is established by combining the proposed electrical model and the ANFIS thermal model to improve the accuracy of estimating the internal temperature of the battery. Finally, the effectiveness of the proposed method is verified by simulation and experiment.
准确估算锂离子电池的内部温度对于开发合适的电池热管理系统、保障电池健康安全运行以及提高电池性能具有重要作用。为了准确估算电池内部温度,本文提出了一种基于改进的电热耦合模型和自适应网络模糊推理系统(ANFIS)的锂离子电池内部温度估算方法。首先,提出了电学模型的参数化方法,并建立了参数受温度和 SOC 影响的电学模型。其次,为了克服锂离子电池复杂的非线性建模问题,建立了 ANFIS 热模型。然后,结合所提出的电学模型和 ANFIS 热学模型,建立了改进的锂离子电池电热耦合模型,从而提高了电池内部温度估算的准确性。最后,通过仿真和实验验证了所提方法的有效性。
{"title":"Internal temperature estimation of lithium-ion battery based on improved electro-thermal coupling model and ANFIS","authors":"Jianping Wen, Zhensheng Li, Haodong Zhang, Chuanwei Zhang","doi":"10.1115/1.4064353","DOIUrl":"https://doi.org/10.1115/1.4064353","url":null,"abstract":"Accurate estimation of the internal temperature of lithium-ion batteries plays an important role in the development of a suitable battery thermal management system, safeguarding the healthy and safe operation of batteries, and improving battery performance. In order to accurately estimate the internal temperature of the battery, this paper proposes a method for estimating the internal temperature of lithium-ion batteries based on an improved electro-thermal coupling model and an Adaptive Network-based Fuzzy Inference System (ANFIS). First, a parameterization method of the electrical model is proposed, and an electrical model whose parameters are affected by temperature and SOC is established. Second, to overcome the complex nonlinear modeling problem of lithium-ion batteries, the ANFIS thermal model is established. Then, an improved electro-thermal coupling model for lithium-ion batteries is established by combining the proposed electrical model and the ANFIS thermal model to improve the accuracy of estimating the internal temperature of the battery. Finally, the effectiveness of the proposed method is verified by simulation and experiment.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"8 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139150237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High Ceramic Loading LATP-PVDF-Al2O3 Composite Film for Lithium-ion Batteries with Favorable Porous Microstructure and Enhanced Thermal Stability 一种用于锂离子电池的高陶瓷负载 LATP-PVDF-Al2O3 复合薄膜,具有良好的多孔微结构和更高的热稳定性
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-21 DOI: 10.1115/1.4064352
Yu Gu, Chris Yuan
A separator plays a crucial role in a Li-ion battery to carry liquid electrolytes while preventing short-circuiting between electrodes. Nevertheless, conventional commercial separators often exhibit poor wettability and are prone to shrink at elevated temperatures due to their limited thermal stability. Herein, we report a heat-resistant LATP-PVDF-Al2O3 composite film with outstanding wetting performance. The thin film was prepared using ball-mill mixing and tape-casting processes. Two solvents NMP and glycerol were applied to prepare the slurry and a favorable microstructure in the film was created after drying. The ionic conductivity of the film was tested at 1.39 mS cm−1 when paired with liquid electrolyte, almost double that of the commercial counterpart. The high ceramic loading of 70% improved both the thermal shrinkage resistance and dendrite inhibition of the membrane. When assembled in an NMC half-cell, the cycling capacity retentions of 92.8% and 92.1% are achieved after 50 cycles at 0.5 C and 1 C, demonstrating its capability to be used in Li-ion batteries.
隔膜在锂离子电池中起着至关重要的作用,它既能承载液态电解质,又能防止电极之间发生短路。然而,传统的商用隔膜通常润湿性较差,而且由于热稳定性有限,在高温下容易收缩。在此,我们报告了一种具有出色润湿性能的耐热 LATP-PVDF-Al2O3 复合薄膜。该薄膜采用球磨混合和胶带浇铸工艺制备而成。制备浆料时使用了 NMP 和甘油两种溶剂,干燥后薄膜形成了良好的微观结构。经测试,该薄膜与液体电解质配对时的离子导电率为 1.39 mS cm-1,几乎是商用同类产品的两倍。70% 的高陶瓷负载提高了薄膜的抗热收缩性和抑制枝晶的能力。在 0.5 摄氏度和 1 摄氏度条件下循环 50 次后,将其装配到一个 NMC 半电池中,可实现 92.8% 和 92.1% 的循环容量保持率,这证明了它在锂离子电池中的应用能力。
{"title":"A High Ceramic Loading LATP-PVDF-Al2O3 Composite Film for Lithium-ion Batteries with Favorable Porous Microstructure and Enhanced Thermal Stability","authors":"Yu Gu, Chris Yuan","doi":"10.1115/1.4064352","DOIUrl":"https://doi.org/10.1115/1.4064352","url":null,"abstract":"\u0000 A separator plays a crucial role in a Li-ion battery to carry liquid electrolytes while preventing short-circuiting between electrodes. Nevertheless, conventional commercial separators often exhibit poor wettability and are prone to shrink at elevated temperatures due to their limited thermal stability. Herein, we report a heat-resistant LATP-PVDF-Al2O3 composite film with outstanding wetting performance. The thin film was prepared using ball-mill mixing and tape-casting processes. Two solvents NMP and glycerol were applied to prepare the slurry and a favorable microstructure in the film was created after drying. The ionic conductivity of the film was tested at 1.39 mS cm−1 when paired with liquid electrolyte, almost double that of the commercial counterpart. The high ceramic loading of 70% improved both the thermal shrinkage resistance and dendrite inhibition of the membrane. When assembled in an NMC half-cell, the cycling capacity retentions of 92.8% and 92.1% are achieved after 50 cycles at 0.5 C and 1 C, demonstrating its capability to be used in Li-ion batteries.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"135 44","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on State of Health Estimation of Lithium Batteries Based on EIS and CNN-VIT Models 基于 EIS 和 CNN-VIT 模型的锂电池健康状况评估研究
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-21 DOI: 10.1115/1.4064350
C. Chang, Guangwei Su, Haimei Cen, Jiuchun Jiang, Aina Tian, Yang Gao, Tiezhou Wu
With the development of electric vehicles, the demand for lithium-ion batteries has been increasing annually. Accurately estimating the State of Health (SOH) of lithium-ion batteries is crucial for their efficient and reliable use. Most of the existing research on SOH estimation is based on parameters such as current, voltage, and temperature, which are prone to fluctuations. Estimating the SOH of lithium-ion batteries based on Electrochemical Impedance Spectroscopy (EIS) and data-driven approaches has been proven effective. In this paper, we explore a novel SOH estimation model for lithium batteries based on EIS and Convolutional Neural Network (CNN)-Vision Transformer (VIT). The EIS data is treated as a grayscale image, eliminating the need for manual feature extraction and simultaneously capturing both local and global features in the data. To validate the effectiveness of the proposed model, a series of simulation experiments are conducted, comparing it with various traditional machine learning models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2). The simulation results demonstrate that the proposed model performs best overall in the testing dataset at three different temperatures. This confirms that the model can accurately and stably estimate the SOH of lithium-ion batteries without requiring manual feature extraction and knowledge of battery aging temperature.
随着电动汽车的发展,对锂离子电池的需求逐年增加。准确估算锂离子电池的健康状况(SOH)对其高效可靠地使用至关重要。现有的 SOH 估算研究大多基于电流、电压和温度等容易波动的参数。基于电化学阻抗谱(EIS)和数据驱动方法估算锂离子电池的 SOH 已被证明是有效的。本文探索了一种基于 EIS 和卷积神经网络(CNN)-视觉转换器(VIT)的新型锂电池 SOH 估算模型。EIS 数据被视为灰度图像,无需人工特征提取,可同时捕捉数据中的局部和全局特征。为了验证所提模型的有效性,我们进行了一系列仿真实验,从均方根误差 (RMSE)、平均绝对误差 (MAE)、平均绝对百分比误差 (MAPE) 和判定系数 (R2) 等方面将其与各种传统机器学习模型进行了比较。模拟结果表明,在三种不同温度下的测试数据集中,所提出的模型总体表现最佳。这证明该模型无需人工特征提取和电池老化温度知识,就能准确、稳定地估计锂离子电池的 SOH。
{"title":"Research on State of Health Estimation of Lithium Batteries Based on EIS and CNN-VIT Models","authors":"C. Chang, Guangwei Su, Haimei Cen, Jiuchun Jiang, Aina Tian, Yang Gao, Tiezhou Wu","doi":"10.1115/1.4064350","DOIUrl":"https://doi.org/10.1115/1.4064350","url":null,"abstract":"\u0000 With the development of electric vehicles, the demand for lithium-ion batteries has been increasing annually. Accurately estimating the State of Health (SOH) of lithium-ion batteries is crucial for their efficient and reliable use. Most of the existing research on SOH estimation is based on parameters such as current, voltage, and temperature, which are prone to fluctuations. Estimating the SOH of lithium-ion batteries based on Electrochemical Impedance Spectroscopy (EIS) and data-driven approaches has been proven effective. In this paper, we explore a novel SOH estimation model for lithium batteries based on EIS and Convolutional Neural Network (CNN)-Vision Transformer (VIT). The EIS data is treated as a grayscale image, eliminating the need for manual feature extraction and simultaneously capturing both local and global features in the data. To validate the effectiveness of the proposed model, a series of simulation experiments are conducted, comparing it with various traditional machine learning models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2). The simulation results demonstrate that the proposed model performs best overall in the testing dataset at three different temperatures. This confirms that the model can accurately and stably estimate the SOH of lithium-ion batteries without requiring manual feature extraction and knowledge of battery aging temperature.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"130 51","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supercapacitor voltage doubling equalization method based on adaptive grouping 基于自适应分组的超级电容器电压倍增均衡方法
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-21 DOI: 10.1115/1.4064351
Chao Wang, Xiaohu Liu, Li Han, Tiezhou Wu, Xiangyu Wang
In order to improve the inconsistency of lithium-ion battery packs, an adaptive grouping supercapacitor voltage-doubling equalization circuit is proposed on the basis of capacitor equalization circuits, which combines switching arrays with clustering algorithms for grouping, and multiple batteries can be equalized at the same moment according to the energy state. The supercapacitor energy storage module can realize parallel energy storage and series energy release, which greatly improves the equalization speed and solves the problem of slowing down the equalization speed at the later stage of equalization. Build six series-connected battery simulation platform for experiments, the experimental data results show that the scheme proposed in this paper compared with the control group program equalization time is shortened by about 50%, has a faster equalization speed, and can effectively improve the inconsistency of the battery pack, effectively verifying the feasibility of the equalization program and superiority.
为了改善锂离子电池组的不一致性,在电容均衡电路的基础上,提出了一种自适应分组超级电容倍压均衡电路,将开关阵列与聚类算法相结合进行分组,可根据能量状态在同一时刻对多个电池进行均衡。超级电容储能模块可实现并联储能和串联释能,大大提高了均衡速度,解决了均衡后期均衡速度变慢的问题。搭建六组串联电池仿真平台进行实验,实验数据结果表明,本文提出的方案与对照组方案相比均衡时间缩短了约50%,具有较快的均衡速度,并能有效改善电池组的不一致性,有效验证了均衡方案的可行性和优越性。
{"title":"Supercapacitor voltage doubling equalization method based on adaptive grouping","authors":"Chao Wang, Xiaohu Liu, Li Han, Tiezhou Wu, Xiangyu Wang","doi":"10.1115/1.4064351","DOIUrl":"https://doi.org/10.1115/1.4064351","url":null,"abstract":"\u0000 In order to improve the inconsistency of lithium-ion battery packs, an adaptive grouping supercapacitor voltage-doubling equalization circuit is proposed on the basis of capacitor equalization circuits, which combines switching arrays with clustering algorithms for grouping, and multiple batteries can be equalized at the same moment according to the energy state. The supercapacitor energy storage module can realize parallel energy storage and series energy release, which greatly improves the equalization speed and solves the problem of slowing down the equalization speed at the later stage of equalization. Build six series-connected battery simulation platform for experiments, the experimental data results show that the scheme proposed in this paper compared with the control group program equalization time is shortened by about 50%, has a faster equalization speed, and can effectively improve the inconsistency of the battery pack, effectively verifying the feasibility of the equalization program and superiority.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"28 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138948601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiO2 nanolayer coated carbon as Pt support for enhanced methanol oxidation reaction 将 TiO2 纳米层涂碳作为 Pt 支持物用于增强甲醇氧化反应
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-12-14 DOI: 10.1115/1.4064290
Weiqi Zhang, Yuan Jin, Meihui Tan, Huiyuan Liu, Qiang Ma, Qian Xu, Huaneng Su
To facilitate the large-scale application of direct methanol fuel cells (DMFCs), the issue of low Pt/C durability due to Pt degradation and carbon corrosion in harsh DMFC operating conditions must be addressed. A promising strategy is to hybridize metal oxides with carbon materials, resulting in a durable and conductive support that exhibits a strong metal-support interaction (SMSI) effect on platinum nanoparticles (Pt NPs). In this study, we introduced a TiO2 coating on carbon black, creating a TiO2 nanolayer between Pt and carbon black. The nanolayer not only protects the carbon black but also activates the SMSI effect on Pt. The resulting Pt/C@TiO2 electrocatalyst exhibits superior durability than commercial Pt/C. After the accelerated durability test, the mass activity loss of the methanol oxidation reaction (MOR) of Pt/C@TiO2 (32%) is significantly lower than that of Pt/C (46.8%). Moreover, the MOR activity of Pt/C@TiO2 is higher than Pt/C as well. It suggests that Pt/C@TiO2 shows great potential as a highly durable and active electrocatalyst for DMFCs.
为了促进直接甲醇燃料电池(DMFC)的大规模应用,必须解决在苛刻的 DMFC 运行条件下由于铂降解和碳腐蚀造成的 Pt/C 耐久性低的问题。一种很有前景的策略是将金属氧化物与碳材料杂化,从而产生一种耐久的导电支撑物,这种支撑物对铂纳米粒子(Pt NPs)具有很强的金属-支撑相互作用(SMSI)效应。在这项研究中,我们在炭黑上引入了 TiO2 涂层,在铂和炭黑之间形成了一个 TiO2 纳米层。该纳米层不仅能保护炭黑,还能激活铂的 SMSI 效应。由此产生的 Pt/C@TiO2 电催化剂的耐久性优于商用 Pt/C。经过加速耐久性测试,Pt/C@TiO2 的甲醇氧化反应(MOR)质量活性损失(32%)明显低于 Pt/C(46.8%)。此外,Pt/C@TiO2 的甲醇氧化活性也高于 Pt/C。这表明,Pt/C@TiO2 作为 DMFCs 的高耐久性和高活性电催化剂具有巨大潜力。
{"title":"TiO2 nanolayer coated carbon as Pt support for enhanced methanol oxidation reaction","authors":"Weiqi Zhang, Yuan Jin, Meihui Tan, Huiyuan Liu, Qiang Ma, Qian Xu, Huaneng Su","doi":"10.1115/1.4064290","DOIUrl":"https://doi.org/10.1115/1.4064290","url":null,"abstract":"\u0000 To facilitate the large-scale application of direct methanol fuel cells (DMFCs), the issue of low Pt/C durability due to Pt degradation and carbon corrosion in harsh DMFC operating conditions must be addressed. A promising strategy is to hybridize metal oxides with carbon materials, resulting in a durable and conductive support that exhibits a strong metal-support interaction (SMSI) effect on platinum nanoparticles (Pt NPs). In this study, we introduced a TiO2 coating on carbon black, creating a TiO2 nanolayer between Pt and carbon black. The nanolayer not only protects the carbon black but also activates the SMSI effect on Pt. The resulting Pt/C@TiO2 electrocatalyst exhibits superior durability than commercial Pt/C. After the accelerated durability test, the mass activity loss of the methanol oxidation reaction (MOR) of Pt/C@TiO2 (32%) is significantly lower than that of Pt/C (46.8%). Moreover, the MOR activity of Pt/C@TiO2 is higher than Pt/C as well. It suggests that Pt/C@TiO2 shows great potential as a highly durable and active electrocatalyst for DMFCs.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"2010 6","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139002026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Redacted Extended Kalman Filter and Fuzzy Logic based technique for measurement of State-of-charge of Lithium-ion battery 基于扩展卡尔曼滤波器和模糊逻辑的锂离子电池充电状态测量新技术
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-11-17 DOI: 10.1115/1.4064096
Chinmay Behra, R. Mandal, Amitesh Kumar
This paper presents a novel technique based on an adaptive approach of Redacted Extended Kalman Filter (REKF) assimilating features of fuzzy logic for measuring the State-of-charge (SoC) for lithium-ion batteries. Accurately determining SoC is crucial for maximizing battery capacity and performance. However, existing extended Kalman filtering algorithms suffer from issues such as inadequate noise resistance and noise sensitivity, as well as difficulties in selecting the forgetting factor. Aforesaid REKF technique address these challenges adequately for parameter extraction.The proposed method involves establishing a Thevenin equivalent circuit model and using the Recursive Least Squares with Forgetting Factor (RLSFF) to identify model parameters.Further, an evaluation factor is established, and to adaptively adjust the value of the forgetting factor, fuzzy control is utilized to estimate the SoC accurately, which enhances the extended Kalman filtering algorithm with noise-adaptive algorithm features. This modified algorithm considers the identification results from the parameter estimation step and executes them circularly to achieve precise SoC estimation. Results demonstrate that the proposed method has excellent robustness and estimation accuracy compared to other filtering algorithms, even under variable working conditions including a wide range of State-of-Health (SOH) and temperature. The proposed method is expected to enhance the performance of battery management systems for various applications.
本文介绍了一种新技术,该技术基于一种自适应的红外扩展卡尔曼滤波器(REKF)方法,吸收了模糊逻辑的特点,用于测量锂离子电池的充电状态(SoC)。准确确定 SoC 对于最大限度地提高电池容量和性能至关重要。然而,现有的扩展卡尔曼滤波算法存在抗噪能力和噪声灵敏度不足以及遗忘因子选择困难等问题。所提出的方法包括建立 Thevenin 等效电路模型,并使用带遗忘因子的递归最小二乘法(RLSFF)来识别模型参数。此外,还建立了一个评估因子,并利用模糊控制来自适应调节遗忘因子的值,以准确估计 SoC,从而增强了扩展卡尔曼滤波算法的噪声自适应算法功能。这种改进算法考虑了参数估计步骤的识别结果,并循环执行,以实现精确的 SoC 估计。结果表明,与其他滤波算法相比,所提出的方法具有出色的鲁棒性和估计精度,即使在包括宽范围健康状况(SOH)和温度在内的多变工作条件下也是如此。所提出的方法有望提高电池管理系统在各种应用中的性能。
{"title":"A Novel Redacted Extended Kalman Filter and Fuzzy Logic based technique for measurement of State-of-charge of Lithium-ion battery","authors":"Chinmay Behra, R. Mandal, Amitesh Kumar","doi":"10.1115/1.4064096","DOIUrl":"https://doi.org/10.1115/1.4064096","url":null,"abstract":"This paper presents a novel technique based on an adaptive approach of Redacted Extended Kalman Filter (REKF) assimilating features of fuzzy logic for measuring the State-of-charge (SoC) for lithium-ion batteries. Accurately determining SoC is crucial for maximizing battery capacity and performance. However, existing extended Kalman filtering algorithms suffer from issues such as inadequate noise resistance and noise sensitivity, as well as difficulties in selecting the forgetting factor. Aforesaid REKF technique address these challenges adequately for parameter extraction.The proposed method involves establishing a Thevenin equivalent circuit model and using the Recursive Least Squares with Forgetting Factor (RLSFF) to identify model parameters.Further, an evaluation factor is established, and to adaptively adjust the value of the forgetting factor, fuzzy control is utilized to estimate the SoC accurately, which enhances the extended Kalman filtering algorithm with noise-adaptive algorithm features. This modified algorithm considers the identification results from the parameter estimation step and executes them circularly to achieve precise SoC estimation. Results demonstrate that the proposed method has excellent robustness and estimation accuracy compared to other filtering algorithms, even under variable working conditions including a wide range of State-of-Health (SOH) and temperature. The proposed method is expected to enhance the performance of battery management systems for various applications.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"6 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139263395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel liquid cooling battery thermal management system with a cooling plate based on biomimetic fractal channels 一种新型液冷电池热管理系统,带有基于仿生分形通道的冷却板
IF 2.5 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-11-17 DOI: 10.1115/1.4064095
Zhiguo Tang, Yi Xiang, Man Li, Jianping Cheng
An effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high temperature uniformity for the batteries under high discharge rate, especially under the extreme uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase of the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase of the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1 and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.
要快速释放动力电池在高放电率下产生的热量,确保电动汽车的安全运行,就需要一个有效的电池热管理系统(BTMS)。受自然界仿生结构的启发,提出了一种基于仿生分形结构冷却板的新型液体冷却 BTMS。通过建立 BTMS 的物理模型,进行了数值计算,分析了冷却板结构参数和冷却剂入口速度对电池热性能的影响。结果表明,冷却板能够满足电池在高放电率条件下对高温均匀性的散热要求,尤其是在相邻分形分支处于同一水平的极端均匀通道分布模式下。此外,增加分形支路的组数可以提高冷却板的冷却能力,降低冷却液的压降。增加通道的级数、长度比和冷却剂的入口速度可以提高冷却能力。然而,这些增强热传递的方法需要消耗更多的泵功率。当分形分支组数为 4、通道级数为 3、长度比为 1、冷却剂入口速度为 0.5 m/s 时,BTMS 可将电池在 4C 速率放电下的最高温度和最大温差分别控制在 31.68 ℃ 和 4.15 ℃ 以内。最后,对分形分支组数、通道级数、长度比和冷却剂入口速度四个因素进行了正交试验。结果表明,分支级数是最重要的结构参数。
{"title":"A novel liquid cooling battery thermal management system with a cooling plate based on biomimetic fractal channels","authors":"Zhiguo Tang, Yi Xiang, Man Li, Jianping Cheng","doi":"10.1115/1.4064095","DOIUrl":"https://doi.org/10.1115/1.4064095","url":null,"abstract":"An effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high temperature uniformity for the batteries under high discharge rate, especially under the extreme uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase of the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase of the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1 and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"17 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139263475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of an improved modular multilevel converter reconfigurable equalization scheme based on difference of voltage variation 基于电压变化差的改进模块化多电平变换器可重构均衡方案的设计
4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2023-11-08 DOI: 10.1115/1.4063847
Li Liao, Xuantong Hu, Hongguang Li, Shu Sun, Jiuchun Jiang
Abstract In order to solve the problem of lower available capacity and shorter cycle life due to the barrel effect of series-connected batteries, as well as the problem of pseudo-equalization caused by battery aging, this paper proposes a modified modular multilevel converter (MMC) reconfigurable equalization scheme with difference of voltage variation (DOVV) as the equalization variable. The equalization topology consists of an MMC circuit and a voltage regulator, which effectively solves the problems of low total available capacity, inefficient energy transfer, and slow equalization by reducing the number of switches and achieving independent control of the equalization and voltage regulator modules. A control strategy based on the Oxford aging dataset is proposed with DOVV as the equalization variable, and a fuzzy logic control algorithm is introduced according to the distribution characteristics of DOVV data. This equalization control strategy overcomes the pseudo-equalization phenomenon due to battery aging. The simulation results show that compared with the traditional DC–DC energy transfer equalization topology, the energy transfer efficiency of the proposed equalization topology is improved by 62.15% and the equalization time is reduced by about 16.36%, and the pseudo-equalization phenomenon caused by the aging of the battery pack during the equalization process is well overcome. The feasibility of the proposed equalization scheme is verified.
摘要为了解决串联电池的桶状效应导致的可用容量降低和循环寿命缩短的问题,以及电池老化导致的伪均衡问题,提出了一种改进的模块化多电平变换器(MMC)可重构均衡方案,以电压变化差(DOVV)为均衡变量。均衡拓扑由MMC电路和稳压电路组成,通过减少开关数量,实现均衡模块和稳压模块的独立控制,有效解决了总可用容量低、能量传递效率低、均衡速度慢等问题。提出了一种基于牛津老化数据集的控制策略,以DOVV作为均衡变量,并根据DOVV数据的分布特点引入模糊逻辑控制算法。该均衡控制策略克服了电池老化引起的伪均衡现象。仿真结果表明,与传统的DC-DC能量传递均衡拓扑相比,所提出的均衡拓扑的能量传递效率提高了62.15%,均衡时间缩短了约16.36%,并且很好地克服了均衡过程中电池组老化引起的伪均衡现象。验证了所提均衡方案的可行性。
{"title":"Design of an improved modular multilevel converter reconfigurable equalization scheme based on difference of voltage variation","authors":"Li Liao, Xuantong Hu, Hongguang Li, Shu Sun, Jiuchun Jiang","doi":"10.1115/1.4063847","DOIUrl":"https://doi.org/10.1115/1.4063847","url":null,"abstract":"Abstract In order to solve the problem of lower available capacity and shorter cycle life due to the barrel effect of series-connected batteries, as well as the problem of pseudo-equalization caused by battery aging, this paper proposes a modified modular multilevel converter (MMC) reconfigurable equalization scheme with difference of voltage variation (DOVV) as the equalization variable. The equalization topology consists of an MMC circuit and a voltage regulator, which effectively solves the problems of low total available capacity, inefficient energy transfer, and slow equalization by reducing the number of switches and achieving independent control of the equalization and voltage regulator modules. A control strategy based on the Oxford aging dataset is proposed with DOVV as the equalization variable, and a fuzzy logic control algorithm is introduced according to the distribution characteristics of DOVV data. This equalization control strategy overcomes the pseudo-equalization phenomenon due to battery aging. The simulation results show that compared with the traditional DC–DC energy transfer equalization topology, the energy transfer efficiency of the proposed equalization topology is improved by 62.15% and the equalization time is reduced by about 16.36%, and the pseudo-equalization phenomenon caused by the aging of the battery pack during the equalization process is well overcome. The feasibility of the proposed equalization scheme is verified.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135293131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Electrochemical Energy Conversion and Storage
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1