Qing Wang, Huanding Qin, Kai Yang, Hao Wu, Fangmin He, Jin Meng
{"title":"A Robust Sidelobe Cancellation Algorithm Based on Beamforming Vector Norm Constraint","authors":"Qing Wang, Huanding Qin, Kai Yang, Hao Wu, Fangmin He, Jin Meng","doi":"10.1049/2024/7696638","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Sidelobe cancellation (SLC) is a well-established beamforming technique for mitigating interference, particularly in the context of satellite communication (SATCOM). However, traditional SLC suffers from the issue of partially canceling the desired signal at high signal-to-noise ratio (SNR), primarily due to unconstrained beamforming processing. Extensive research has been conducted to address this problem; however, existing algorithms have limitations such as dependence on knowledge of signal array vectors or number of interferers and involve high computational complexity. In this paper, we propose a robust SLC algorithm based on beamforming vector norm constraint. Our proposal offers a practical solution by only requiring knowledge of the earth station antenna gain and maximum auxiliary array gain to the desired signal, both of which are fully known. Furthermore, compared to traditional SLC, our proposed method introduces additional computational complexity that only scales linearly with the size of the auxiliary array. Simulation results demonstrate comparable performance between our proposed method and existing techniques such as diagonal loading and spatial degrees-of-freedom control-based algorithms.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7696638","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7696638","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sidelobe cancellation (SLC) is a well-established beamforming technique for mitigating interference, particularly in the context of satellite communication (SATCOM). However, traditional SLC suffers from the issue of partially canceling the desired signal at high signal-to-noise ratio (SNR), primarily due to unconstrained beamforming processing. Extensive research has been conducted to address this problem; however, existing algorithms have limitations such as dependence on knowledge of signal array vectors or number of interferers and involve high computational complexity. In this paper, we propose a robust SLC algorithm based on beamforming vector norm constraint. Our proposal offers a practical solution by only requiring knowledge of the earth station antenna gain and maximum auxiliary array gain to the desired signal, both of which are fully known. Furthermore, compared to traditional SLC, our proposed method introduces additional computational complexity that only scales linearly with the size of the auxiliary array. Simulation results demonstrate comparable performance between our proposed method and existing techniques such as diagonal loading and spatial degrees-of-freedom control-based algorithms.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf