Integration and characterization of a zeolite material in a microcomponent for measurements of environmental carbon dioxide

Erika Åkerfeldt, Greger Thornell, Anders Persson
{"title":"Integration and characterization of a zeolite material in a microcomponent for measurements of environmental carbon dioxide","authors":"Erika Åkerfeldt,&nbsp;Greger Thornell,&nbsp;Anders Persson","doi":"10.1002/appl.202300105","DOIUrl":null,"url":null,"abstract":"<p>This study demonstrates integration of a zeolite material in a ceramic microcomponent intended for use in sampling and analysis of environmental carbon dioxide (CO<sub>2</sub>). The zeolite material was integrated in bulk form, allowing for adsorption of large quantities of CO<sub>2</sub> compared to previous integration attempts as thin films. To obtain a porous bulk material, an injectable slurry was developed, where expandable polymeric microspheres were added as a sacrificial template. By varying water and sphere contents of the slurry, it was possible to tune the porosity of the zeolite material between 55% and 72%. This in turn affected the flow resistance of the microcomponents, where an increase in the porosity of the filling from 62% to 72% reduced the flow resistance from 84 to 28 kPa min cm<sup>−3</sup>. In addition, the spheres facilitated complete fillings free from cracks. The zeolite material was seen to retain its ability to adsorb CO<sub>2</sub> after processing, but it was not possible to quantify the level of retention compared to unprocessed zeolite.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202300105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates integration of a zeolite material in a ceramic microcomponent intended for use in sampling and analysis of environmental carbon dioxide (CO2). The zeolite material was integrated in bulk form, allowing for adsorption of large quantities of CO2 compared to previous integration attempts as thin films. To obtain a porous bulk material, an injectable slurry was developed, where expandable polymeric microspheres were added as a sacrificial template. By varying water and sphere contents of the slurry, it was possible to tune the porosity of the zeolite material between 55% and 72%. This in turn affected the flow resistance of the microcomponents, where an increase in the porosity of the filling from 62% to 72% reduced the flow resistance from 84 to 28 kPa min cm−3. In addition, the spheres facilitated complete fillings free from cracks. The zeolite material was seen to retain its ability to adsorb CO2 after processing, but it was not possible to quantify the level of retention compared to unprocessed zeolite.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于测量环境二氧化碳的微型组件中沸石材料的集成与表征
这项研究展示了将沸石材料集成到陶瓷微组件中,用于环境二氧化碳(CO2)的采样和分析。沸石材料以块状形式集成,与之前的薄膜集成尝试相比,可以吸附大量的二氧化碳。为了获得多孔的块状材料,开发了一种可注射的浆料,其中加入了可膨胀的聚合物微球作为牺牲模板。通过改变浆液中水和球的含量,可以将沸石材料的孔隙率调整在 55% 到 72% 之间。这反过来又影响了微组件的流动阻力,填充物的孔隙率从 62% 增加到 72%,流动阻力从 84 kPa min cm-3 降低到 28 kPa min cm-3。此外,球体还有助于完全填充,避免出现裂缝。沸石材料在加工后仍具有吸附二氧化碳的能力,但与未加工的沸石相比,无法量化其吸附能力。本文受版权保护,保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Water Ageing of Epoxies: Effect of Thermal Oxidation Synthesis Strategies for Rare Earth Activated Inorganic Phosphors: A Mini Review Functionally Graded Impact Attenuator Using Bonded Construction Cover Image: Volume 4 Issue 1 Cover Image: Volume 3 Issue 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1