首页 > 最新文献

Applied Research最新文献

英文 中文
Cover Image: Volume 3 Issue 4 封面图片:第 3 卷第 4 期
Pub Date : 2024-08-11 DOI: 10.1002/appl.202470401

Applied Research is a multidisciplinary journal that focuses on bridging fundamental research and practical applications, supporting sustainable problem-solving and global initiatives. The journal covers high-quality research in fields such as Materials, Applied Physics, Chemistry, Applied Biology, Food Science, Engineering, Biomedical Sciences, and Social Sciences. Authors can submit various article types, including Reviews, Tutorials, and Research Articles. The journal aims to highlight innovative research that demonstrates the application of knowledge, methods, instrumentation, and technology into solutions.

应用研究》是一本多学科期刊,重点关注基础研究与实际应用之间的联系,支持可持续的问题解决和全球倡议。该期刊涵盖材料、应用物理、化学、应用生物学、食品科学、工程学、生物医学科学和社会科学等领域的高质量研究。作者可以提交各种类型的文章,包括综述、教程和研究文章。该期刊旨在突出创新研究,展示知识、方法、仪器和技术在解决方案中的应用。
{"title":"Cover Image: Volume 3 Issue 4","authors":"","doi":"10.1002/appl.202470401","DOIUrl":"https://doi.org/10.1002/appl.202470401","url":null,"abstract":"<p><i>Applied Research</i> is a multidisciplinary journal that focuses on bridging fundamental research and practical applications, supporting sustainable problem-solving and global initiatives. The journal covers high-quality research in fields such as Materials, Applied Physics, Chemistry, Applied Biology, Food Science, Engineering, Biomedical Sciences, and Social Sciences. Authors can submit various article types, including Reviews, Tutorials, and Research Articles. The journal aims to highlight innovative research that demonstrates the application of knowledge, methods, instrumentation, and technology into solutions.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202470401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of pure and mixed phase sulfurized‐carbon black in battery cathodes for lithium sulfur batteries 硫化锂电池正极中纯碳黑和混相硫化碳黑的比较研究
Pub Date : 2024-07-23 DOI: 10.1002/appl.202400034
Surjit Sahoo, D. Chatterjee, Subhasish Basu Majumder, Kh M Asif Raihan, Brice Lacroix, Suprem R. Das
Lithium‐sulfur battery (LSB) chemistry is regarded as one of the most promising contenders for powering next‐generation electronics, including electric vehicles. This is due to its high theoretical capacity, the use of inexpensive and environmentally friendly materials, and its alignment with climate‐smart manufacturing principles. Sulfur, the electroactive element in LSBs, undergoes lithiation to form a series of polysulfides, each contributing to the battery's energy density. However, this chemistry encounters several challenges, particularly concerning the stability of sulfur. Recent studies have shown that the presence of a full gamma phase of sulfur in an LSB cathode significantly enhances the capacity and overall cell performance. However, despite the advantages of cathodes with gamma sulfur, the characteristics of LSBs with mixed crystal phases of sulfur (alpha, beta, and gamma) have not been extensively studied. In this context, we developed a simple and cost‐effective synthesis method to produce both single‐phase (alpha) and mixed‐phase sulfur (primarily a mixture of alpha and gamma, with a trace of beta) and conducted their detailed physical and electrochemical characterization for use as electroactive cathode materials in LSBs. The cells fabricated using sulfur‐carbon black as the cathode delivered a specific capacity of approximately 640 mAh/g at a current density of 275 mA/g, demonstrating excellent cyclic stability over 50 cycles with a capacity retention of around 97%. This performance is superior to that of the sulfur‐baked carbon black composite cathode, which achieved 440 mAh/g at the same current density.
锂硫电池(LSB)化学被认为是为包括电动汽车在内的下一代电子产品提供动力的最有前途的竞争者之一。这得益于其理论容量高、使用廉价环保材料以及符合气候智能制造原则。LSB中的电活性元素硫会发生锂化反应,形成一系列多硫化物,从而提高电池的能量密度。然而,这种化学反应遇到了一些挑战,尤其是硫的稳定性。最近的研究表明,在 LSB 阴极中存在全伽马硫相可显著提高电池容量和整体性能。然而,尽管伽马硫阴极具有优势,但对具有混合硫晶相(α、β 和伽马)的 LSB 的特性还没有进行广泛的研究。在这种情况下,我们开发了一种简单而经济有效的合成方法来生产单相硫(α)和混合相硫(主要是α和γ的混合物,还有微量的β),并对它们进行了详细的物理和电化学表征,以用作 LSB 中的电活性阴极材料。使用硫碳黑作为阴极制造的电池在电流密度为 275 mA/g 时的比容量约为 640 mAh/g,在 50 个循环周期内表现出卓越的循环稳定性,容量保持率约为 97%。这一性能优于硫焙烧炭黑复合阴极,后者在相同电流密度下的比容量为 440 mAh/g。
{"title":"Comparative study of pure and mixed phase sulfurized‐carbon black in battery cathodes for lithium sulfur batteries","authors":"Surjit Sahoo, D. Chatterjee, Subhasish Basu Majumder, Kh M Asif Raihan, Brice Lacroix, Suprem R. Das","doi":"10.1002/appl.202400034","DOIUrl":"https://doi.org/10.1002/appl.202400034","url":null,"abstract":"Lithium‐sulfur battery (LSB) chemistry is regarded as one of the most promising contenders for powering next‐generation electronics, including electric vehicles. This is due to its high theoretical capacity, the use of inexpensive and environmentally friendly materials, and its alignment with climate‐smart manufacturing principles. Sulfur, the electroactive element in LSBs, undergoes lithiation to form a series of polysulfides, each contributing to the battery's energy density. However, this chemistry encounters several challenges, particularly concerning the stability of sulfur. Recent studies have shown that the presence of a full gamma phase of sulfur in an LSB cathode significantly enhances the capacity and overall cell performance. However, despite the advantages of cathodes with gamma sulfur, the characteristics of LSBs with mixed crystal phases of sulfur (alpha, beta, and gamma) have not been extensively studied. In this context, we developed a simple and cost‐effective synthesis method to produce both single‐phase (alpha) and mixed‐phase sulfur (primarily a mixture of alpha and gamma, with a trace of beta) and conducted their detailed physical and electrochemical characterization for use as electroactive cathode materials in LSBs. The cells fabricated using sulfur‐carbon black as the cathode delivered a specific capacity of approximately 640 mAh/g at a current density of 275 mA/g, demonstrating excellent cyclic stability over 50 cycles with a capacity retention of around 97%. This performance is superior to that of the sulfur‐baked carbon black composite cathode, which achieved 440 mAh/g at the same current density.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141811168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical cell‐substrate impedance sensing (ECIS) in lung biology and disease 肺部生物学和疾病中的细胞-基质电阻抗传感(ECIS)
Pub Date : 2024-07-19 DOI: 10.1002/appl.202400059
Lena Schaller, Katharina Hofmann, Fabienne Geiger, Alexander Dietrich
The lungs are exposed to a hostile environment from both sites: the airways and the vasculature. However, an efficient gas exchange of oxygen (O2) and CO2 is only possible through a very thin alveolo‐capillary membrane. Therefore, maintaining cell barrier integrity is essential for respiratory health and function. On the vascular site, endothelial cells form a natural barrier, while in the airways epithelial cells are most important for protection of the lung tissues. Moreover, fibroblasts, by transforming to myofibroblasts, are essential for wound closure after mechanical and chemical microinjuries in the respiratory tract. Along this line, loss of cell resistance in vascular endothelial and lung epithelial cells enhances invasion of pathogens (e.g., SARS‐CoV‐2) and results in pulmonary edema formation, while increasing barrier function of pulmonary (myo)fibroblasts blocks gas exchange in patients with pulmonary fibrosis. Therefore, electrical cell‐substrate impedance sensing‐based quantification of changes in cell barrier function in lung endothelial and epithelial cells as well as fibroblasts after application of harmful triggers (e.g., hypoxia, receptor agonists, and toxicants) is a convenient and state‐of‐the‐art technique. After isolation of primary cells from mouse models and human tissues, changes in cell resistance can be detected in real time. By using lung cells from gene‐deficient mouse models, microRNAs or the small‐interfering RNA technology essential proteins for cell adhesion, for example, ion channels of the transient receptor potential family are identified in comparison to wild‐type control cells. In the future, these proteins may be useful as drug targets for novel therapeutic options in patients with lung edema or pulmonary fibrosis.
肺从气道和血管两个部位暴露在恶劣的环境中。然而,只有通过非常薄的肺泡-毛细血管膜才能进行有效的氧气(O2)和二氧化碳气体交换。因此,保持细胞屏障的完整性对呼吸系统的健康和功能至关重要。在血管部位,内皮细胞形成天然屏障,而在气道中,上皮细胞对保护肺组织最为重要。此外,成纤维细胞通过转化为肌成纤维细胞,对呼吸道机械和化学微损伤后的伤口闭合至关重要。沿着这一思路,血管内皮细胞和肺上皮细胞中细胞阻力的丧失会增强病原体(如 SARS-CoV-2)的入侵并导致肺水肿的形成,而肺(肌)成纤维细胞屏障功能的增强会阻碍肺纤维化患者的气体交换。因此,基于细胞-基质阻抗电传感技术来量化肺内皮细胞、上皮细胞和成纤维细胞在施加有害诱因(如缺氧、受体激动剂和毒物)后细胞屏障功能的变化是一种便捷而先进的技术。从小鼠模型和人体组织中分离出原代细胞后,可实时检测细胞抵抗力的变化。通过使用基因缺陷小鼠模型的肺细胞、microRNA 或小干扰 RNA 技术,与野生型对照细胞相比,可以鉴定出细胞粘附所必需的蛋白质,例如瞬时受体电位家族的离子通道。未来,这些蛋白质可能会成为肺水肿或肺纤维化患者的新型治疗方案的药物靶点。
{"title":"Electrical cell‐substrate impedance sensing (ECIS) in lung biology and disease","authors":"Lena Schaller, Katharina Hofmann, Fabienne Geiger, Alexander Dietrich","doi":"10.1002/appl.202400059","DOIUrl":"https://doi.org/10.1002/appl.202400059","url":null,"abstract":"The lungs are exposed to a hostile environment from both sites: the airways and the vasculature. However, an efficient gas exchange of oxygen (O2) and CO2 is only possible through a very thin alveolo‐capillary membrane. Therefore, maintaining cell barrier integrity is essential for respiratory health and function. On the vascular site, endothelial cells form a natural barrier, while in the airways epithelial cells are most important for protection of the lung tissues. Moreover, fibroblasts, by transforming to myofibroblasts, are essential for wound closure after mechanical and chemical microinjuries in the respiratory tract. Along this line, loss of cell resistance in vascular endothelial and lung epithelial cells enhances invasion of pathogens (e.g., SARS‐CoV‐2) and results in pulmonary edema formation, while increasing barrier function of pulmonary (myo)fibroblasts blocks gas exchange in patients with pulmonary fibrosis. Therefore, electrical cell‐substrate impedance sensing‐based quantification of changes in cell barrier function in lung endothelial and epithelial cells as well as fibroblasts after application of harmful triggers (e.g., hypoxia, receptor agonists, and toxicants) is a convenient and state‐of‐the‐art technique. After isolation of primary cells from mouse models and human tissues, changes in cell resistance can be detected in real time. By using lung cells from gene‐deficient mouse models, microRNAs or the small‐interfering RNA technology essential proteins for cell adhesion, for example, ion channels of the transient receptor potential family are identified in comparison to wild‐type control cells. In the future, these proteins may be useful as drug targets for novel therapeutic options in patients with lung edema or pulmonary fibrosis.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141822210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xanthan gum modification to surface and interfacial properties between soil‐based matrixes and petroleum oils to minimize soil pollution 黄原胶改性土壤基质与石油之间的表面和界面特性,最大限度地减少土壤污染
Pub Date : 2024-07-15 DOI: 10.1002/appl.202400096
Firoz Ahmed, Brenda Hutton-Prager
A novel approach exploiting surfaces and interfaces between liquid oils and porous soil media was used to investigate the role of xanthan gum (XG) in minimizing the spread of petroleum oil spills on land. 1.6 wt% XG added to soil‐based mixture matrixes (topsoil, sand, clay, and moisture) resulted in a 50% reduction in oil spreading area at 0 and 5 wt% moisture content, at 1.3 cm depth of soil matrix. Also recorded was a 45% increase in time taken for the low‐ and medium‐viscosity oils to penetrate this soil depth. XG alters the surface energy and roughness of the soil matrixes, which additionally contributes to a reduction in oil spreading capabilities. Interfacial phenomena between individual oil droplets and soil matrixes demonstrated variable findings of droplet spreading and penetration with XG, depending upon the heterogeneity of the soil matrix itself. XG assisted a reduced lateral spread in heterogeneous soil matrixes and a reduced vertical penetration in clay‐based matrixes. These interfacial results highlighted the often‐observed differing transport phenomena at the interface compared with the bulk. This initial study demonstrates a novel approach to incorporate surface energy phenomena into the suite of soil remediation efforts by introducing natural biopolymers in high‐risk land oil‐spill areas to slow oil contaminant spread. Future studies will further characterize the benefits of XG in containing oil flow.
利用液态油和多孔土壤介质之间的表面和界面的新方法,研究了黄原胶 (XG) 在最大限度地减少陆地石油泄漏扩散方面的作用。在以土壤为基础的混合物基质(表土、沙子、粘土和水分)中添加 1.6 wt% 的黄原胶后,在含水量为 0 和 5 wt%、深度为 1.3 cm 的土壤基质中,石油扩散面积减少了 50%。此外,低粘度和中等粘度油类渗入这一土壤深度所需的时间也增加了 45%。XG 改变了土壤基质的表面能和粗糙度,从而降低了油类的铺展能力。单个油滴与土壤基质之间的界面现象表明,油滴在 XG 作用下的扩散和渗透结果各不相同,这取决于土壤基质本身的异质性。在异质土壤基质中,XG 有助于减少横向扩散,而在粘土基质中则会减少垂直渗透。这些界面结果凸显了在界面上经常观察到的与主体不同的传输现象。这项初步研究展示了一种将表面能现象纳入土壤修复工作的新方法,即在高风险的陆地漏油区域引入天然生物聚合物,以减缓石油污染物的扩散。未来的研究将进一步确定 XG 在遏制油流方面的优势。
{"title":"Xanthan gum modification to surface and interfacial properties between soil‐based matrixes and petroleum oils to minimize soil pollution","authors":"Firoz Ahmed, Brenda Hutton-Prager","doi":"10.1002/appl.202400096","DOIUrl":"https://doi.org/10.1002/appl.202400096","url":null,"abstract":"A novel approach exploiting surfaces and interfaces between liquid oils and porous soil media was used to investigate the role of xanthan gum (XG) in minimizing the spread of petroleum oil spills on land. 1.6 wt% XG added to soil‐based mixture matrixes (topsoil, sand, clay, and moisture) resulted in a 50% reduction in oil spreading area at 0 and 5 wt% moisture content, at 1.3 cm depth of soil matrix. Also recorded was a 45% increase in time taken for the low‐ and medium‐viscosity oils to penetrate this soil depth. XG alters the surface energy and roughness of the soil matrixes, which additionally contributes to a reduction in oil spreading capabilities. Interfacial phenomena between individual oil droplets and soil matrixes demonstrated variable findings of droplet spreading and penetration with XG, depending upon the heterogeneity of the soil matrix itself. XG assisted a reduced lateral spread in heterogeneous soil matrixes and a reduced vertical penetration in clay‐based matrixes. These interfacial results highlighted the often‐observed differing transport phenomena at the interface compared with the bulk. This initial study demonstrates a novel approach to incorporate surface energy phenomena into the suite of soil remediation efforts by introducing natural biopolymers in high‐risk land oil‐spill areas to slow oil contaminant spread. Future studies will further characterize the benefits of XG in containing oil flow.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced, high‐performance thermo‐insulating plaster 先进的高性能隔热灰泥
Pub Date : 2024-07-14 DOI: 10.1002/appl.202300112
A. Athanasiadi, M. Andrikopoulou, M. Smyrnioti, Y. Georgiou, M. Zamparas, V. Dracopoulos, T. Ioannides
The main purpose of many current studies regarding energy efficiency is the improvement of the thermal resistance of buildings. To fulfill this goal, the development of advanced insulating materials, to be incorporated in the building envelopes, is imperative. Aerogels are ultralight porous materials typically produced via the sol‐gel process followed by supercritical drying of the wet gel. They exhibit very high porosities and a mesoporous‐macroporous structure which endows aerogels with extremely low thermal conductivity. This makes them ideal candidates for ambient thermal insulation applications. However, the cost for aerogel insulation is considerably higher than the one of standard insulation products. In the present work, highly porous aerogel‐like materials based on silica and commercial novolac resin were developed and added to common mortars. The prepared materials were dried under ambient pressure to minimize the manufacturing cost. The bulk density of silica quasi‐aerogels was 0.03 g/cm3–0.09 g/cm3 and that of the novolac resin samples 0.09 g/cm3–0.21 g/cm3. The aerogels were incorporated in mortars and cured for 28 days before measurement of thermal conductivity. The values of the thermal conductivity coefficient of the measured samples were 0.047 W/m K–0.058 W/m K for the silica reinforced mortars and 0.036 W/m K–0.044 W/m K for the novolac reinforced ones.
目前,许多有关能源效率的研究的主要目的是提高建筑物的热阻。为了实现这一目标,必须开发先进的隔热材料,并将其应用于建筑围护结构中。气凝胶是一种超轻多孔材料,通常通过溶胶-凝胶工艺生产,然后对湿凝胶进行超临界干燥。气凝胶具有极高的孔隙率和介孔-大孔结构,因而导热率极低。这使它们成为环境隔热应用的理想候选材料。然而,气凝胶隔热材料的成本大大高于标准隔热产品。本研究开发了基于二氧化硅和商用酚醛树脂的高多孔气凝胶材料,并将其添加到普通砂浆中。所制备的材料在常压下干燥,以最大限度地降低制造成本。二氧化硅准气凝胶的体积密度为 0.03 g/cm3-0.09 g/cm3,酚醛树脂样品的体积密度为 0.09 g/cm3-0.21 g/cm3。在测量导热系数之前,将气凝胶加入砂浆中并固化 28 天。测得的样品导热系数值分别为:二氧化硅增强砂浆为 0.047 W/m K-0.058 W/m K,酚醛树脂增强砂浆为 0.036 W/m K-0.044 W/m K。
{"title":"Advanced, high‐performance thermo‐insulating plaster","authors":"A. Athanasiadi, M. Andrikopoulou, M. Smyrnioti, Y. Georgiou, M. Zamparas, V. Dracopoulos, T. Ioannides","doi":"10.1002/appl.202300112","DOIUrl":"https://doi.org/10.1002/appl.202300112","url":null,"abstract":"The main purpose of many current studies regarding energy efficiency is the improvement of the thermal resistance of buildings. To fulfill this goal, the development of advanced insulating materials, to be incorporated in the building envelopes, is imperative. Aerogels are ultralight porous materials typically produced via the sol‐gel process followed by supercritical drying of the wet gel. They exhibit very high porosities and a mesoporous‐macroporous structure which endows aerogels with extremely low thermal conductivity. This makes them ideal candidates for ambient thermal insulation applications. However, the cost for aerogel insulation is considerably higher than the one of standard insulation products. In the present work, highly porous aerogel‐like materials based on silica and commercial novolac resin were developed and added to common mortars. The prepared materials were dried under ambient pressure to minimize the manufacturing cost. The bulk density of silica quasi‐aerogels was 0.03 g/cm3–0.09 g/cm3 and that of the novolac resin samples 0.09 g/cm3–0.21 g/cm3. The aerogels were incorporated in mortars and cured for 28 days before measurement of thermal conductivity. The values of the thermal conductivity coefficient of the measured samples were 0.047 W/m K–0.058 W/m K for the silica reinforced mortars and 0.036 W/m K–0.044 W/m K for the novolac reinforced ones.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the ageing behaviour of multiple reused polypropylene binding twines 多次重复使用聚丙烯捆扎麻绳的老化行为调查
Pub Date : 2024-07-07 DOI: 10.1002/appl.202400090
Philippe du Maire, Felix Gärtner, Matthias H. Deckert, M. Johlitz, Andreas Öchsner
Climate change is one of the significant challenges of the 21st century. To achieve climate goals a change in plastic waste management needs to be implemented. This research examines the potential of thermo‐mechanical recycling of plastic waste, focusing on agricultural binding twines made from polypropylene. Old binding twines from agriculture were collected and recycled with a twin screw extruder. The ageing behaviour of the recyclate in terms of multiple recycling is examined in detail with tensile tests and melt volume rate measurements. The findings indicate a general degradation in mechanical properties and a decrease in viscosity due to molecular chain scission. Despite these degradations, the material remains processable, indicating the potential for continued recycling loops.
气候变化是 21 世纪的重大挑战之一。为了实现气候目标,必须改变塑料废物的管理方式。本研究以聚丙烯制成的农业捆扎用麻绳为重点,探讨了塑料废物热机械回收利用的潜力。研究人员收集了旧的农用捆扎麻绳,并用双螺杆挤出机进行回收。通过拉伸试验和熔体容积率测量,详细研究了多次回收的回收物的老化行为。研究结果表明,由于分子链断裂,机械性能普遍下降,粘度降低。尽管出现了这些退化现象,但材料仍然可以加工,这表明它具有继续循环利用的潜力。
{"title":"Investigation of the ageing behaviour of multiple reused polypropylene binding twines","authors":"Philippe du Maire, Felix Gärtner, Matthias H. Deckert, M. Johlitz, Andreas Öchsner","doi":"10.1002/appl.202400090","DOIUrl":"https://doi.org/10.1002/appl.202400090","url":null,"abstract":"Climate change is one of the significant challenges of the 21st century. To achieve climate goals a change in plastic waste management needs to be implemented. This research examines the potential of thermo‐mechanical recycling of plastic waste, focusing on agricultural binding twines made from polypropylene. Old binding twines from agriculture were collected and recycled with a twin screw extruder. The ageing behaviour of the recyclate in terms of multiple recycling is examined in detail with tensile tests and melt volume rate measurements. The findings indicate a general degradation in mechanical properties and a decrease in viscosity due to molecular chain scission. Despite these degradations, the material remains processable, indicating the potential for continued recycling loops.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141670974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of the modern development of metal‐insulator‐metal waveguide based plasmonic sensors 基于金属-绝缘体-金属波导的等离子传感器的现代发展特点
Pub Date : 2024-07-07 DOI: 10.1002/appl.202400069
M. A. Butt
Plasmonic sensors based on metal‐insulator‐metal (MIM) waveguides are renowned for their miniaturization and high sensitivity in various sensing applications. A broad spectrum of researchers is numerically investigating the characteristics of MIM waveguide‐based plasmonic sensors with diverse cavity shapes. However, practical demonstrations of these sensors have not yet been realized, primarily due to the overlooked aspect of the light coupling mechanism into these waveguides. In this context, two distinct methods for coupling light into and out of plasmonic chips based on MIM waveguides are presented.
基于金属-绝缘体-金属(MIM)波导的等离子体传感器因其微型化和在各种传感应用中的高灵敏度而闻名。众多研究人员正在对具有不同腔形的基于 MIM 波导的等离子传感器的特性进行数值研究。然而,这些传感器的实际演示尚未实现,这主要是由于这些波导的光耦合机制被忽视了。在此背景下,本文介绍了两种不同的方法,用于将光线耦合到基于 MIM 波导的等离子芯片中或将光线耦合到基于 MIM 波导的等离子芯片中。
{"title":"Features of the modern development of metal‐insulator‐metal waveguide based plasmonic sensors","authors":"M. A. Butt","doi":"10.1002/appl.202400069","DOIUrl":"https://doi.org/10.1002/appl.202400069","url":null,"abstract":"Plasmonic sensors based on metal‐insulator‐metal (MIM) waveguides are renowned for their miniaturization and high sensitivity in various sensing applications. A broad spectrum of researchers is numerically investigating the characteristics of MIM waveguide‐based plasmonic sensors with diverse cavity shapes. However, practical demonstrations of these sensors have not yet been realized, primarily due to the overlooked aspect of the light coupling mechanism into these waveguides. In this context, two distinct methods for coupling light into and out of plasmonic chips based on MIM waveguides are presented.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141670529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image: Volume 3 Issue 3 封面图片:第 3 卷第 3 期
Pub Date : 2024-06-06 DOI: 10.1002/appl.202470301

Solar-driven overall water splitting using particulate photocatalysts represents a sustainable route to generate H2. In this minireview, we outline recent progress in hybridization strategies in constructing high- performance cocatalyst/photocatalyst systems. We discussed the fundamental principles of photocatalytic water splitting and the pivotal role of cocatalysts. We placed special emphasis on understanding the structure-activity relationship of cocatalysts for effective photocatalytic H2 production from pure H2O. We expect this review to offer insights and stimulate further research interest in the development of high-performance cocatalysts for photocatalytic water splitting.

利用微粒光催化剂进行太阳能驱动的整体水分离是产生 H2 的一条可持续途径。在本小视图中,我们概述了在构建高性能催化剂/光催化剂系统的杂化策略方面的最新进展。我们讨论了光催化水分离的基本原理以及茧催化剂的关键作用。我们特别强调要了解从纯 H2O 中有效光催化产生 H2 的茧催化剂的结构-活性关系。我们希望这篇综述能为开发用于光催化水分离的高性能茧催化剂提供见解,并激发进一步的研究兴趣。
{"title":"Cover Image: Volume 3 Issue 3","authors":"","doi":"10.1002/appl.202470301","DOIUrl":"https://doi.org/10.1002/appl.202470301","url":null,"abstract":"<p>Solar-driven overall water splitting using particulate photocatalysts represents a sustainable route to generate H<sub>2</sub>. In this minireview, we outline recent progress in hybridization strategies in constructing high- performance cocatalyst/photocatalyst systems. We discussed the fundamental principles of photocatalytic water splitting and the pivotal role of cocatalysts. We placed special emphasis on understanding the structure-activity relationship of cocatalysts for effective photocatalytic H<sub>2</sub> production from pure H<sub>2</sub>O. We expect this review to offer insights and stimulate further research interest in the development of high-performance cocatalysts for photocatalytic water splitting.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202470301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upgrading event driven Monte Carlo simulations for molecule‐based morphological control for battery and sensor applications 升级事件驱动蒙特卡洛模拟,实现基于分子的形态控制,用于电池和传感器应用
Pub Date : 2024-05-09 DOI: 10.1002/appl.202400048
Y. Marien, Maofan Zhou, M. Edeleva, Dagmar R. D’hooge
Multiphase polymeric materials and applications play a prominent role in our society. One of the key challenges is the design and modification of their macromolecules so that the composition and structuring of the phases as well as the interactions between them can be controlled from the molecular scale onwards. In the present contribution, it is highlighted that more recently developed event driven (kinetic) Monte Carlo models provide an interesting framework to grasp molecular variations over various length scales. The strength lies in the tracking of individual molecules per phase of interest so that interphase transfer events can be sampled based on the distributed nature of the (macro)molecules present. Hence, the micro‐scale of local concentrations and temperatures can be connected to the meso‐scale defining interphase transport and morphological variations, with an additional connection to the macro‐ or application scale within reach by adding macro‐scale transfer events to the overall sampling scheme. Starting from a benchmark coupled matrix based Monte Carlo (CMMC) study on the multiphase formation of engineering composites which explicitly acknowledges the type of (macro)molecules present in each phase, it is showcased that the CMMC framework can support the general field of energy and electronics applications. This is highlighted through (i) a case study devoted to the design of polymer electrolytes for batteries, and (ii) a case study on blend design for the regulated stretching of piezoresistive sensors.This article is protected by copyright. All rights reserved.
多相聚合物材料及其应用在我们的社会中发挥着重要作用。关键挑战之一是设计和改造其大分子,以便从分子尺度开始控制各相的组成和结构以及它们之间的相互作用。本文强调,最近开发的事件驱动(动力学)蒙特卡洛模型提供了一个有趣的框架,可用于把握各种长度尺度上的分子变化。该模型的优势在于可对每一感兴趣的相中的单个分子进行跟踪,从而可根据存在的(大)分子的分布性质对相间转移事件进行采样。因此,可以将局部浓度和温度的微观尺度与定义相间传输和形态变化的中观尺度连接起来,并通过在整体采样方案中添加宏观尺度的传输事件,将其与宏观尺度或应用尺度连接起来。基于矩阵的蒙特卡洛(CMMC)研究明确承认每相中存在的(宏观)分子类型,从工程复合材料多相形成的基准耦合矩阵开始,展示了 CMMC 框架可以支持能源和电子应用的一般领域。本文受版权保护。本文受版权保护。
{"title":"Upgrading event driven Monte Carlo simulations for molecule‐based morphological control for battery and sensor applications","authors":"Y. Marien, Maofan Zhou, M. Edeleva, Dagmar R. D’hooge","doi":"10.1002/appl.202400048","DOIUrl":"https://doi.org/10.1002/appl.202400048","url":null,"abstract":"Multiphase polymeric materials and applications play a prominent role in our society. One of the key challenges is the design and modification of their macromolecules so that the composition and structuring of the phases as well as the interactions between them can be controlled from the molecular scale onwards. In the present contribution, it is highlighted that more recently developed event driven (kinetic) Monte Carlo models provide an interesting framework to grasp molecular variations over various length scales. The strength lies in the tracking of individual molecules per phase of interest so that interphase transfer events can be sampled based on the distributed nature of the (macro)molecules present. Hence, the micro‐scale of local concentrations and temperatures can be connected to the meso‐scale defining interphase transport and morphological variations, with an additional connection to the macro‐ or application scale within reach by adding macro‐scale transfer events to the overall sampling scheme. Starting from a benchmark coupled matrix based Monte Carlo (CMMC) study on the multiphase formation of engineering composites which explicitly acknowledges the type of (macro)molecules present in each phase, it is showcased that the CMMC framework can support the general field of energy and electronics applications. This is highlighted through (i) a case study devoted to the design of polymer electrolytes for batteries, and (ii) a case study on blend design for the regulated stretching of piezoresistive sensors.This article is protected by copyright. All rights reserved.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of NIR and UV‐LEDs Enables Physical and Chemical Drying of Aqueous Coating Dispersions as New Green Technology 近红外和紫外 LED 的结合使水性涂料分散体的物理和化学干燥成为新的绿色技术
Pub Date : 2024-05-07 DOI: 10.1002/appl.202400011
Lukas Appelhoff, Nicolas Hornemann, Jochen Schmidt, Anita Krautz, Bernd Strehmel
Heptamethine based cyanines, namely 1,3,‐trimethyl‐2‐(2‐2[2‐phenylsulfanyl‐3‐[2‐(1,3,3‐trimethyl‐1,3,3‐trithyl‐1,3‐dihydro‐indol‐2‐ylidene)‐ethylidene]cyclohex‐1‐enyl]vinyl)‐3H‐indolium chloride (S1) and 2‐[2‐(2‐chloro‐[2‐[1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1,3‐dihydro‐benzo[e]indol‐2‐ylidene]‐ethylidene]cyclopent‐1‐enyl]vinyl]‐1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1Hbenzo[e]indolium hydroxide, inner salt, triethylammonium salt (S2), efficiently result in physical drying of an aqueous dispersion comprising a polyurethane binder. S2 possesses a water solubility of 40 g/L. A high‐intensity NIR‐LED emitting at 820 nm with an intensity of 1 W/cm2 served as light source. The cyanine converted the light absorbed into heat by internal conversion needing less drying time compared to conventional drying. Water content after film formation showed less then 1%. In the second step, UV exposure with a LED emitting at 395 nm resulted in formation of semi‐interpenetrating polymer networks by crosslinking of the multifunctional (meth)acrylate operating as reactive diluent. TPO‐L served as effective UV‐photoinitiator. Furthermore, the UV‐exposure together with Norrish Type I and Type II photoinitator systems results in a very efficient bleaching of the green physical dried film. This contribution shows for the first time a new photonic hybrid technique describing successful replacement of an oven‐based process by a photonic based step that generates heat needed for drying.This article is protected by copyright. All rights reserved.
七亚胺基氰基,即 1,3,-三甲基-2-(2-2-[2-苯硫基-3-[2-(1,3,3-三甲基-1,3,3-三乙基-1,3-二氢-吲哚-2-亚基)-亚乙基]环己-1-烯基]乙烯基)-3H-吲哚鎓氯化物(S1)和 2-[2-(2-氯-[2-[1,1-二甲基-7-磺酸基-3-(4-磺酸基丁基)-1、2-(2-氯-[2-[1,1-二甲基-7-磺酸基-3-(4-磺酸基丁基)-1,3-二氢-苯并[e]吲哚-2-亚基]-亚乙基]环戊-1-烯基]乙烯基]-1,1-二甲基-7-磺酸基-3-(4-磺酸基丁基)-1H 苯并[e]吲哚鎓氢氧化物,内盐,三乙基铵盐(S2)能有效地使包含聚氨酯粘合剂的水性分散体物理干燥。S2 的水溶性为 40 克/升。820 纳米波长、强度为 1 W/cm2 的高强度近红外发光二极管用作光源。与传统的干燥方法相比,氰基通过内部转换将吸收的光能转化为热能,所需的干燥时间更短。成膜后的含水量低于 1%。第二步,用波长为 395 nm 的 LED 进行紫外线照射,通过交联作为活性稀释剂的多功能(甲基)丙烯酸酯,形成半互穿聚合物网络。TPO-L 可作为有效的紫外线光引发剂。此外,紫外线照射与 Norrish I 型和 II 型光引发剂系统一起使用,可对绿色物理干燥薄膜进行高效漂白。本文首次展示了一种新的光子混合技术,描述了用光子步骤成功取代烘箱工艺,产生干燥所需的热量。本文受版权保护。
{"title":"Combination of NIR and UV‐LEDs Enables Physical and Chemical Drying of Aqueous Coating Dispersions as New Green Technology","authors":"Lukas Appelhoff, Nicolas Hornemann, Jochen Schmidt, Anita Krautz, Bernd Strehmel","doi":"10.1002/appl.202400011","DOIUrl":"https://doi.org/10.1002/appl.202400011","url":null,"abstract":"Heptamethine based cyanines, namely 1,3,‐trimethyl‐2‐(2‐2[2‐phenylsulfanyl‐3‐[2‐(1,3,3‐trimethyl‐1,3,3‐trithyl‐1,3‐dihydro‐indol‐2‐ylidene)‐ethylidene]cyclohex‐1‐enyl]vinyl)‐3H‐indolium chloride (S1) and 2‐[2‐(2‐chloro‐[2‐[1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1,3‐dihydro‐benzo[e]indol‐2‐ylidene]‐ethylidene]cyclopent‐1‐enyl]vinyl]‐1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1Hbenzo[e]indolium hydroxide, inner salt, triethylammonium salt (S2), efficiently result in physical drying of an aqueous dispersion comprising a polyurethane binder. S2 possesses a water solubility of 40 g/L. A high‐intensity NIR‐LED emitting at 820 nm with an intensity of 1 W/cm2 served as light source. The cyanine converted the light absorbed into heat by internal conversion needing less drying time compared to conventional drying. Water content after film formation showed less then 1%. In the second step, UV exposure with a LED emitting at 395 nm resulted in formation of semi‐interpenetrating polymer networks by crosslinking of the multifunctional (meth)acrylate operating as reactive diluent. TPO‐L served as effective UV‐photoinitiator. Furthermore, the UV‐exposure together with Norrish Type I and Type II photoinitator systems results in a very efficient bleaching of the green physical dried film. This contribution shows for the first time a new photonic hybrid technique describing successful replacement of an oven‐based process by a photonic based step that generates heat needed for drying.This article is protected by copyright. All rights reserved.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1