{"title":"phylaGAN: Data augmentation through conditional GANs and autoencoders for improving disease prediction accuracy using microbiome data.","authors":"Divya Sharma, Wendy Lou, Wei Xu","doi":"10.1093/bioinformatics/btae161","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nResearch is improving our understanding of how the microbiome interacts with the human body and its impact on human health. Existing machine learning methods have shown great potential in discriminating healthy from diseased microbiome states. However, Machine Learning based prediction using microbiome data has challenges such as, small sample size, imbalance between cases and controls and high cost of collecting large number of samples. To address these challenges, we propose a deep learning framework phylaGAN to augment the existing datasets with generated microbiome data using a combination of conditional generative adversarial network (C-GAN) and autoencoder. Conditional generative adversarial networks train two models against each other to compute larger simulated datasets that are representative of the original dataset. Autoencoder maps the original and the generated samples onto a common subspace to make the prediction more accurate.\n\n\nRESULTS\nExtensive evaluation and predictive analysis was conducted on two datasets, T2D study and Cirrhosis study showing an improvement in mean AUC using data augmentation by 11% and 5% respectively. External validation on a cohort classifying between obese and lean subjects, with a smaller sample size provided an improvement in mean AUC close to 32% when augmented through phylaGAN as compared to using the original cohort. Our findings not only indicate that the generative adversarial networks can create samples that mimic the original data across various diversity metrics, but also highlight the potential of enhancing disease prediction through machine learning models trained on synthetic data.\n\n\nAVAILABILITY AND IMPLEMENTATION\nhttps://github.com/divya031090/phylaGAN.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae161","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
MOTIVATION
Research is improving our understanding of how the microbiome interacts with the human body and its impact on human health. Existing machine learning methods have shown great potential in discriminating healthy from diseased microbiome states. However, Machine Learning based prediction using microbiome data has challenges such as, small sample size, imbalance between cases and controls and high cost of collecting large number of samples. To address these challenges, we propose a deep learning framework phylaGAN to augment the existing datasets with generated microbiome data using a combination of conditional generative adversarial network (C-GAN) and autoencoder. Conditional generative adversarial networks train two models against each other to compute larger simulated datasets that are representative of the original dataset. Autoencoder maps the original and the generated samples onto a common subspace to make the prediction more accurate.
RESULTS
Extensive evaluation and predictive analysis was conducted on two datasets, T2D study and Cirrhosis study showing an improvement in mean AUC using data augmentation by 11% and 5% respectively. External validation on a cohort classifying between obese and lean subjects, with a smaller sample size provided an improvement in mean AUC close to 32% when augmented through phylaGAN as compared to using the original cohort. Our findings not only indicate that the generative adversarial networks can create samples that mimic the original data across various diversity metrics, but also highlight the potential of enhancing disease prediction through machine learning models trained on synthetic data.
AVAILABILITY AND IMPLEMENTATION
https://github.com/divya031090/phylaGAN.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.