Dominic Blackburn, Nathan S. Hill*, Christopher J. Wood, Tamilselvan Velusamy, Balder A. Nieto-Díaz, Caitlin Woolley, Andy Brown, Loukas Zampelis, Trevor McArdle, Molly Worth, Timothy Thornber, Ibrahim Albariqi, Rachel C. Kilbride, Tingxiang Yang, C. Neil Hunter, Graham J. Leggett, George Koutsourakis, James C. Blakesley, Fernando A. Castro, David Beynon, Trystan M. Watson, Dumitru Sirbu and David G. Lidzey*,
{"title":"Back-Contact Perovskite Solar Cell Modules Fabricated via Roll-to-Roll Slot-Die Coating: Scale-Up toward Manufacturing","authors":"Dominic Blackburn, Nathan S. Hill*, Christopher J. Wood, Tamilselvan Velusamy, Balder A. Nieto-Díaz, Caitlin Woolley, Andy Brown, Loukas Zampelis, Trevor McArdle, Molly Worth, Timothy Thornber, Ibrahim Albariqi, Rachel C. Kilbride, Tingxiang Yang, C. Neil Hunter, Graham J. Leggett, George Koutsourakis, James C. Blakesley, Fernando A. Castro, David Beynon, Trystan M. Watson, Dumitru Sirbu and David G. Lidzey*, ","doi":"10.1021/acsaem.4c0273410.1021/acsaem.4c02734","DOIUrl":null,"url":null,"abstract":"<p >We fabricate a type of back-contact perovskite solar cell based on 1.5 μm-width grooves that are embossed into a plastic film whose opposing “walls” are selectively coated with either n- or p-type contacts. A perovskite precursor solution is then deposited into the grooves, creating individual photovoltaic devices. Each groove device is series-connected to its neighbors, creating minimodules consisting of hundreds of connected grooves. Here, we report on the fabrication of groove-based devices using slot-die coating to deposit the perovskite precursor and explore the structure of the perovskite in the grooves using a range of microscopy and spectroscopy techniques. Significantly, our devices do not contain any expensive or scarce elements such as indium, indicating that this technology is both sustainable and low-cost. Furthermore, all coating processes explored here were performed using roll-to-roll processing techniques. Our technology is therefore completely scalable and is consistent with high-throughput, low-cost manufacturing.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 4","pages":"2219–2228 2219–2228"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02734","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02734","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We fabricate a type of back-contact perovskite solar cell based on 1.5 μm-width grooves that are embossed into a plastic film whose opposing “walls” are selectively coated with either n- or p-type contacts. A perovskite precursor solution is then deposited into the grooves, creating individual photovoltaic devices. Each groove device is series-connected to its neighbors, creating minimodules consisting of hundreds of connected grooves. Here, we report on the fabrication of groove-based devices using slot-die coating to deposit the perovskite precursor and explore the structure of the perovskite in the grooves using a range of microscopy and spectroscopy techniques. Significantly, our devices do not contain any expensive or scarce elements such as indium, indicating that this technology is both sustainable and low-cost. Furthermore, all coating processes explored here were performed using roll-to-roll processing techniques. Our technology is therefore completely scalable and is consistent with high-throughput, low-cost manufacturing.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.