Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods?

Powders Pub Date : 2024-04-03 DOI:10.3390/powders3020012
E. Bilgili
{"title":"Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods?","authors":"E. Bilgili","doi":"10.3390/powders3020012","DOIUrl":null,"url":null,"abstract":"Population balance models (PBMs) for milling processes are based on two fundamental concepts: specific breakage rate function and breakage distribution function, which vary with particle size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of these two functions’ parameters, may cause falsified kinetics and breakage distribution mechanisms. This perspective article aims to expose and mitigate various aspects of potential falsification, thus enabling the development of a robust PBM. Through an in-depth analysis of historical approaches to the PBM inverse problem and experimental observations, as well as the author’s recent contributions to the inverse methodology within the context of back-calculation methods, six principles have been offered: (i) include the governing physical phenomena and reduce errors in model building; (ii) reduce the number of model parameters via size–operation-dependent functional forms, hybrid approaches for back-calculation, and combination with CFD–DEM and other mechanistic models; (iii) generate a dense particle size distribution data set obtained at various milling times and/or locations; (iv) ensure a grid-independent solution with a sufficient number of size classes; (v) use a global optimization-based back-calculation method for parameter estimation and provide standard errors of the estimates; and (vi) test the predictive capability of the PBM. This perspective article boosts awareness of various challenges involved in the solution of the inverse PBM problem as pertinent to milling processes and provides researchers with six principles to minimize falsified kinetics.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/powders3020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Population balance models (PBMs) for milling processes are based on two fundamental concepts: specific breakage rate function and breakage distribution function, which vary with particle size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of these two functions’ parameters, may cause falsified kinetics and breakage distribution mechanisms. This perspective article aims to expose and mitigate various aspects of potential falsification, thus enabling the development of a robust PBM. Through an in-depth analysis of historical approaches to the PBM inverse problem and experimental observations, as well as the author’s recent contributions to the inverse methodology within the context of back-calculation methods, six principles have been offered: (i) include the governing physical phenomena and reduce errors in model building; (ii) reduce the number of model parameters via size–operation-dependent functional forms, hybrid approaches for back-calculation, and combination with CFD–DEM and other mechanistic models; (iii) generate a dense particle size distribution data set obtained at various milling times and/or locations; (iv) ensure a grid-independent solution with a sufficient number of size classes; (v) use a global optimization-based back-calculation method for parameter estimation and provide standard errors of the estimates; and (vi) test the predictive capability of the PBM. This perspective article boosts awareness of various challenges involved in the solution of the inverse PBM problem as pertinent to milling processes and provides researchers with six principles to minimize falsified kinetics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铣削过程的种群平衡建模:我们是否通过反向计算方法伪造了破碎动力学和分布?
制粉过程的种群平衡模型(PBM)基于两个基本概念:特定破碎率函数和破碎分布函数,它们随粒度和设计操作条件而变化。逆问题的求解,即这两个函数参数的估算,可能会导致动力学和破碎分布机制的错误。本视角文章旨在揭示和缓解潜在的各方面问题,从而开发出稳健的 PBM。通过深入分析 PBM 逆问题的历史方法和实验观察,以及作者最近在反向计算方法背景下对逆方法的贡献,提出了六项原则:(i) 包括支配物理现象并减少建立模型时的误差;(ii) 通过与粒度操作相关的函数形式、反向计算的混合方法以及与 CFD-DEM 和其他力学模型的结合,减少模型参数的数量;(iii) 生成在不同研磨时间和/或地点获得的密集粒度分布数据集;(iv) 确保与网格无关的解决方案具有足够数量的粒度等级;(v) 使用基于全局优化的反向计算方法进行参数估计,并提供估计值的标准误差;以及 (vi) 测试 PBM 的预测能力。这篇观点性文章提高了人们对解决与制粉过程相关的 PBM 逆问题所涉及的各种挑战的认识,并为研究人员提供了六项原则,以最大限度地减少伪造动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractionation of Aerosols by Particle Size and Material Composition Using a Classifying Aerodynamic Lens Discrete Element Method Simulation of Particulate Material Fracture Behavior on a Stretchable Single Filter Fiber with Additional Gas Flow Consistency in Young’s Modulus of Powders: A Review with Experiments Size and Shape Selective Classification of Nanoparticles Multidimensional Separation by Magnetic Seeded Filtration: Theoretical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1