The fractionation of airborne particles based on multiple characteristics is becoming increasingly significant in various industrial and research sectors, including mining and recycling. Recent developments aim to characterize and fractionate particles based on multiple properties simultaneously. This study investigates the fractionation of a technical aerosol composed of a mixture of micron-sized copper and silicon particles by size and material composition using a classifying aerodynamic lens (CAL) setup. Particle size distribution and material composition are analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) for samples collected from the feed stream (upstream of CAL) and product stream (downstream of CAL) at varying operational pressures. The experimental findings generally agree with the predictions of an analytical fractionation model but also point to the importance of particle shape as a third fractionation property. Moreover, the results suggest that material-based fractionation is efficient at low operational pressures, even when the aerodynamic properties of the particle species are similar. This finding could have significant implications for industries where precise particle fractionation is crucial.
在采矿和回收利用等各种工业和研究领域,根据多种特性对空气中的颗粒进行分馏正变得越来越重要。最近的发展旨在同时根据多种特性对颗粒进行表征和分馏。本研究利用分级空气动力透镜(CAL)装置,对由微米级铜和硅混合物组成的技术气溶胶进行粒度和材料成分分馏。使用扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDX)分析了在不同运行压力下从进料流(CAL 上游)和产品流(CAL 下游)收集的样品的粒度分布和材料成分。实验结果与分析分馏模型的预测结果基本吻合,但也指出了颗粒形状作为第三种分馏特性的重要性。此外,实验结果表明,即使颗粒种类的空气动力学特性相似,基于材料的分馏在低操作压力下也是有效的。这一发现可能会对精确颗粒分馏至关重要的行业产生重大影响。
{"title":"Fractionation of Aerosols by Particle Size and Material Composition Using a Classifying Aerodynamic Lens","authors":"M. Masuhr, F. Kruis","doi":"10.3390/powders3030022","DOIUrl":"https://doi.org/10.3390/powders3030022","url":null,"abstract":"The fractionation of airborne particles based on multiple characteristics is becoming increasingly significant in various industrial and research sectors, including mining and recycling. Recent developments aim to characterize and fractionate particles based on multiple properties simultaneously. This study investigates the fractionation of a technical aerosol composed of a mixture of micron-sized copper and silicon particles by size and material composition using a classifying aerodynamic lens (CAL) setup. Particle size distribution and material composition are analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) for samples collected from the feed stream (upstream of CAL) and product stream (downstream of CAL) at varying operational pressures. The experimental findings generally agree with the predictions of an analytical fractionation model but also point to the importance of particle shape as a third fractionation property. Moreover, the results suggest that material-based fractionation is efficient at low operational pressures, even when the aerodynamic properties of the particle species are similar. This finding could have significant implications for industries where precise particle fractionation is crucial.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141815222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Asylbekov, L. Poggemann, A. Dittler, Hermann Nirschl
This study presents a comprehensive discrete element method (DEM) simulation approach for the stretching of a filter fiber with a separated polydisperse particle structure on top. For a realistic interaction between the fiber surface and the particles, the original surface of the polymer fiber was projected onto the surface of the fiber cylinder using surface imaging technologies (atomic force microscopy (AFM) and white-light interferometry). In addition, the adhesive forces between particle–fiber and particle–particle contacts were calibrated in the DEM domain using values from self-conducted AFM measurements. Fiber stretching was implemented by the linear motion of small periodic fiber elements. Discretization problems were resolved through studying the stretching of a fiber segment at the size of 8 mm. A critical fiber element length was discovered to be ≈100 μm for minimizing discretization dependencies during the cracking of the particle structure. The number and density of particle–particle contacts within the particle loading on the fiber were obtained at two different elongation rates. Effects such as densification of the particulate structure and increased detachment due to additional air flow were demonstrated.
本研究提出了一种全面的离散元素法(DEM)模拟方法,用于拉伸顶部带有分离式多分散颗粒结构的过滤纤维。为了真实反映纤维表面与颗粒之间的相互作用,利用表面成像技术(原子力显微镜(AFM)和白光干涉仪)将聚合物纤维的原始表面投影到纤维圆柱体的表面。此外,利用自行进行的原子力显微镜测量值,在 DEM 域校准了颗粒-纤维和颗粒-颗粒接触之间的粘合力。纤维拉伸是通过小型周期性纤维元件的线性运动来实现的。通过研究尺寸为 8 毫米的纤维段的拉伸,解决了离散化问题。发现纤维元件的临界长度为 ≈100 μm,以最大限度地减少颗粒结构开裂过程中的离散化依赖性。在两种不同的伸长率下,获得了纤维上颗粒负载内颗粒-颗粒接触的数量和密度。结果表明,由于额外气流的作用,颗粒结构发生了致密化并增加了脱离。
{"title":"Discrete Element Method Simulation of Particulate Material Fracture Behavior on a Stretchable Single Filter Fiber with Additional Gas Flow","authors":"E. Asylbekov, L. Poggemann, A. Dittler, Hermann Nirschl","doi":"10.3390/powders3030021","DOIUrl":"https://doi.org/10.3390/powders3030021","url":null,"abstract":"This study presents a comprehensive discrete element method (DEM) simulation approach for the stretching of a filter fiber with a separated polydisperse particle structure on top. For a realistic interaction between the fiber surface and the particles, the original surface of the polymer fiber was projected onto the surface of the fiber cylinder using surface imaging technologies (atomic force microscopy (AFM) and white-light interferometry). In addition, the adhesive forces between particle–fiber and particle–particle contacts were calibrated in the DEM domain using values from self-conducted AFM measurements. Fiber stretching was implemented by the linear motion of small periodic fiber elements. Discretization problems were resolved through studying the stretching of a fiber segment at the size of 8 mm. A critical fiber element length was discovered to be ≈100 μm for minimizing discretization dependencies during the cracking of the particle structure. The number and density of particle–particle contacts within the particle loading on the fiber were obtained at two different elongation rates. Effects such as densification of the particulate structure and increased detachment due to additional air flow were demonstrated.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"109 s1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Cares-Pacheco, Ellen Cordeiro-Silva, Fabien Gerardin, V. Falk
This review, complemented by empirical investigations, delves into the intricate world of industrial powders, examining their elastic properties through diverse methodologies. The study critically assesses Young’s modulus (E) across eight different powder samples from various industries, including joint filler, wheat flour, wheat starch, gluten, glass beads, and sericite. Employing a multidisciplinary approach, integrating uniaxial compression methodologies—both single and cyclic—with vibration techniques, has revealed surprising insights. Particularly notable is the relationship between porosity and Young’s modulus, linking loose powders to the compacts generated under compression methods. Depending on the porosity of the powder bed, Young’s modulus can vary from a few MPa (loose powder) to several GPa (tablet), following an exponential trend. The discussion emphasizes the necessity of integrating various techniques, with a specific focus on the consolidation state of the powder bed, to achieve a comprehensive understanding of bulk elasticity. This underscores the need for low-consolidation methodologies that align more closely with powder technologies and unit operations such as conveying, transport, storage, and feeding. In conclusion, the study suggests avenues for further research, highlighting the importance of exploring bulk elastic properties in loose packing conditions, their relation with flowability, alongside the significance of powder conditioning.
{"title":"Consistency in Young’s Modulus of Powders: A Review with Experiments","authors":"M. Cares-Pacheco, Ellen Cordeiro-Silva, Fabien Gerardin, V. Falk","doi":"10.3390/powders3020017","DOIUrl":"https://doi.org/10.3390/powders3020017","url":null,"abstract":"This review, complemented by empirical investigations, delves into the intricate world of industrial powders, examining their elastic properties through diverse methodologies. The study critically assesses Young’s modulus (E) across eight different powder samples from various industries, including joint filler, wheat flour, wheat starch, gluten, glass beads, and sericite. Employing a multidisciplinary approach, integrating uniaxial compression methodologies—both single and cyclic—with vibration techniques, has revealed surprising insights. Particularly notable is the relationship between porosity and Young’s modulus, linking loose powders to the compacts generated under compression methods. Depending on the porosity of the powder bed, Young’s modulus can vary from a few MPa (loose powder) to several GPa (tablet), following an exponential trend. The discussion emphasizes the necessity of integrating various techniques, with a specific focus on the consolidation state of the powder bed, to achieve a comprehensive understanding of bulk elasticity. This underscores the need for low-consolidation methodologies that align more closely with powder technologies and unit operations such as conveying, transport, storage, and feeding. In conclusion, the study suggests avenues for further research, highlighting the importance of exploring bulk elastic properties in loose packing conditions, their relation with flowability, alongside the significance of powder conditioning.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"130 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As nanoparticle syntheses on a large scale usually yield products with broad size and shape distributions, the properties of nanoparticle-based products need to be tuned after synthesis by narrowing the size and shape distributions or via the removal of undesired fractions. The development of property-selective classification processes requires a universal framework for the quantitative evaluation of multi-dimensional particle fractionation processes. This framework must be applicable to any property and any particle classification process. We extended the well-known one-dimensional methodology commonly used for describing particle size distributions and fractionation processes to the multi-dimensional case to account for the higher complexity of the property distribution and separation functions. In particular, multi-dimensional lognormal distributions are introduced and applied to diameter and length distributions of gold nanorods. The fractionation of nanorods via centrifugation and by orthogonal centrifugal and electric forces is modeled. Moreover, we demonstrate that analytical ultracentrifugation with a multi-wavelength detector (MWL-AUC) is a fast and very accurate method for the measurement of two-dimensional particle size distributions in suspension. The MWL-AUC method is widely applicable to any class of nanoparticles with size-, shape- or composition-dependent optical properties. In addition, we obtained distributions of the lateral diameter and the number of layers of molybdenum disulfide nanosheets via stepwise centrifugation and spectroscopic evaluation of the size fractions.
{"title":"Size and Shape Selective Classification of Nanoparticles","authors":"C. Damm, Danny Long, J. Walter, Wolfgang Peukert","doi":"10.3390/powders3020016","DOIUrl":"https://doi.org/10.3390/powders3020016","url":null,"abstract":"As nanoparticle syntheses on a large scale usually yield products with broad size and shape distributions, the properties of nanoparticle-based products need to be tuned after synthesis by narrowing the size and shape distributions or via the removal of undesired fractions. The development of property-selective classification processes requires a universal framework for the quantitative evaluation of multi-dimensional particle fractionation processes. This framework must be applicable to any property and any particle classification process. We extended the well-known one-dimensional methodology commonly used for describing particle size distributions and fractionation processes to the multi-dimensional case to account for the higher complexity of the property distribution and separation functions. In particular, multi-dimensional lognormal distributions are introduced and applied to diameter and length distributions of gold nanorods. The fractionation of nanorods via centrifugation and by orthogonal centrifugal and electric forces is modeled. Moreover, we demonstrate that analytical ultracentrifugation with a multi-wavelength detector (MWL-AUC) is a fast and very accurate method for the measurement of two-dimensional particle size distributions in suspension. The MWL-AUC method is widely applicable to any class of nanoparticles with size-, shape- or composition-dependent optical properties. In addition, we obtained distributions of the lateral diameter and the number of layers of molybdenum disulfide nanosheets via stepwise centrifugation and spectroscopic evaluation of the size fractions.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"45 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetic seeded filtration (MSF) is a multidimensional solid–liquid separation process capable of fractionating a multimaterial suspension based on particle size and surface properties. It relies on the selective hetero-agglomeration between nonmagnetic target and magnetic seed particles followed by a magnetic separation. Experimental investigations of multimaterial suspensions are challenging and limited. Therefore, a Monte Carlo model for the simulation of hetero-agglomeration processes is developed, validated, and compared to a discrete population balance model. The numerical investigation of both charge-based and hydrophobicity-based separation in an 11-material system, using synthetic agglomeration kernels based on real-world observations, yields results consistent with prior experimental studies and expectations: Although a multidimensional separation is indeed possible, unwanted hetero-agglomeration between target particles results in a reduced selectivity. This effect is more pronounced when separation is based on a dissimilarity rather than a similarity in the separation criterion and emphasizes the advantages of hydrophobicity-based systems. For the first time, 2D grade efficiency functions T(φ,d) are presented for MSF. However, it is shown that these functions strongly depend on the initial state of the suspension, which casts doubt on their general definition for agglomeration-based processes and underlines the importance of a simulation tool like the developed MC model.
磁性种子过滤(MSF)是一种多维固液分离工艺,能够根据颗粒大小和表面特性对多种材料悬浮液进行分馏。它依赖于非磁性目标颗粒和磁性种子颗粒之间的选择性异聚集,然后进行磁分离。多材料悬浮液的实验研究具有挑战性和局限性。因此,我们开发了用于模拟异质聚集过程的蒙特卡洛模型,并将其与离散种群平衡模型进行了验证和比较。在一个 11 种材料的系统中,使用基于实际观察的合成聚结核对基于电荷和疏水性的分离进行了数值研究,得出的结果与之前的实验研究和预期一致:虽然多维分离确实可行,但目标颗粒之间不必要的异性聚结会导致选择性降低。当分离标准是基于异质性而非相似性时,这种影响更为明显,这也凸显了基于疏水性的系统的优势。首次提出了 MSF 的二维级效率函数 T(φ,d)。然而,研究表明这些函数在很大程度上取决于悬浮液的初始状态,这使人们对其在基于团聚的过程中的一般定义产生了怀疑,并强调了像所开发的 MC 模型这样的模拟工具的重要性。
{"title":"Multidimensional Separation by Magnetic Seeded Filtration: Theoretical Study","authors":"Frank Rhein, Haoran Ji, Hermann Nirschl","doi":"10.3390/powders3020014","DOIUrl":"https://doi.org/10.3390/powders3020014","url":null,"abstract":"Magnetic seeded filtration (MSF) is a multidimensional solid–liquid separation process capable of fractionating a multimaterial suspension based on particle size and surface properties. It relies on the selective hetero-agglomeration between nonmagnetic target and magnetic seed particles followed by a magnetic separation. Experimental investigations of multimaterial suspensions are challenging and limited. Therefore, a Monte Carlo model for the simulation of hetero-agglomeration processes is developed, validated, and compared to a discrete population balance model. The numerical investigation of both charge-based and hydrophobicity-based separation in an 11-material system, using synthetic agglomeration kernels based on real-world observations, yields results consistent with prior experimental studies and expectations: Although a multidimensional separation is indeed possible, unwanted hetero-agglomeration between target particles results in a reduced selectivity. This effect is more pronounced when separation is based on a dissimilarity rather than a similarity in the separation criterion and emphasizes the advantages of hydrophobicity-based systems. For the first time, 2D grade efficiency functions T(φ,d) are presented for MSF. However, it is shown that these functions strongly depend on the initial state of the suspension, which casts doubt on their general definition for agglomeration-based processes and underlines the importance of a simulation tool like the developed MC model.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"18 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. P. da Silva, Fanny Judhit Vereau Reyes, Josiane Souza Pereira Daniel, Julia Estevam da Silva Pestana, Samara de Almeida Pires, Humberto Gomes Ferraz
The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the potential to be used in the development of nutraceutical and pharmaceutical formulations. An interesting characteristic of chia is its ability to form viscous mucilage when in contact with water, making it a potential binder in solid formulations. However, there are no studies on chia as a binder, and therefore, the objective of the present study was to evaluate the feasibility of using chia as a binder to produce quinoa granules and, subsequently, develop chewable tablet formulations. The quinoa and chia were in a powder form and then transformed into a wet mass with the help of mixer torque rheometer (MTR) equipment. In the wet granulation form, the following parameters were tested: multiple additions, 15 g of material, and 25 timepoints for the addition of 1 mL of water. An experimental design was carried out to evaluate the impact of the variables on the MTR results for subsequent granulation. The granulation point was possible for T1–T9, and most formulations gave satisfactory results, such as an acceptable resistance of the granules. In the end, a formulation was selected for the development of chewable tablets containing quinoa and chia fibers.
{"title":"Using Chia Powder as a Binder to Obtain Chewable Tablets Containing Quinoa for Dietary Fiber Supplementation","authors":"R. P. da Silva, Fanny Judhit Vereau Reyes, Josiane Souza Pereira Daniel, Julia Estevam da Silva Pestana, Samara de Almeida Pires, Humberto Gomes Ferraz","doi":"10.3390/powders3020013","DOIUrl":"https://doi.org/10.3390/powders3020013","url":null,"abstract":"The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the potential to be used in the development of nutraceutical and pharmaceutical formulations. An interesting characteristic of chia is its ability to form viscous mucilage when in contact with water, making it a potential binder in solid formulations. However, there are no studies on chia as a binder, and therefore, the objective of the present study was to evaluate the feasibility of using chia as a binder to produce quinoa granules and, subsequently, develop chewable tablet formulations. The quinoa and chia were in a powder form and then transformed into a wet mass with the help of mixer torque rheometer (MTR) equipment. In the wet granulation form, the following parameters were tested: multiple additions, 15 g of material, and 25 timepoints for the addition of 1 mL of water. An experimental design was carried out to evaluate the impact of the variables on the MTR results for subsequent granulation. The granulation point was possible for T1–T9, and most formulations gave satisfactory results, such as an acceptable resistance of the granules. In the end, a formulation was selected for the development of chewable tablets containing quinoa and chia fibers.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"68 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140733183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Population balance models (PBMs) for milling processes are based on two fundamental concepts: specific breakage rate function and breakage distribution function, which vary with particle size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of these two functions’ parameters, may cause falsified kinetics and breakage distribution mechanisms. This perspective article aims to expose and mitigate various aspects of potential falsification, thus enabling the development of a robust PBM. Through an in-depth analysis of historical approaches to the PBM inverse problem and experimental observations, as well as the author’s recent contributions to the inverse methodology within the context of back-calculation methods, six principles have been offered: (i) include the governing physical phenomena and reduce errors in model building; (ii) reduce the number of model parameters via size–operation-dependent functional forms, hybrid approaches for back-calculation, and combination with CFD–DEM and other mechanistic models; (iii) generate a dense particle size distribution data set obtained at various milling times and/or locations; (iv) ensure a grid-independent solution with a sufficient number of size classes; (v) use a global optimization-based back-calculation method for parameter estimation and provide standard errors of the estimates; and (vi) test the predictive capability of the PBM. This perspective article boosts awareness of various challenges involved in the solution of the inverse PBM problem as pertinent to milling processes and provides researchers with six principles to minimize falsified kinetics.
{"title":"Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods?","authors":"E. Bilgili","doi":"10.3390/powders3020012","DOIUrl":"https://doi.org/10.3390/powders3020012","url":null,"abstract":"Population balance models (PBMs) for milling processes are based on two fundamental concepts: specific breakage rate function and breakage distribution function, which vary with particle size as well as design–operation conditions. The solution of the inverse problem, i.e., the estimation of these two functions’ parameters, may cause falsified kinetics and breakage distribution mechanisms. This perspective article aims to expose and mitigate various aspects of potential falsification, thus enabling the development of a robust PBM. Through an in-depth analysis of historical approaches to the PBM inverse problem and experimental observations, as well as the author’s recent contributions to the inverse methodology within the context of back-calculation methods, six principles have been offered: (i) include the governing physical phenomena and reduce errors in model building; (ii) reduce the number of model parameters via size–operation-dependent functional forms, hybrid approaches for back-calculation, and combination with CFD–DEM and other mechanistic models; (iii) generate a dense particle size distribution data set obtained at various milling times and/or locations; (iv) ensure a grid-independent solution with a sufficient number of size classes; (v) use a global optimization-based back-calculation method for parameter estimation and provide standard errors of the estimates; and (vi) test the predictive capability of the PBM. This perspective article boosts awareness of various challenges involved in the solution of the inverse PBM problem as pertinent to milling processes and provides researchers with six principles to minimize falsified kinetics.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140749800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epoxy powders offer a low-cost way of manufacturing thick-section composite parts, such as those found in wind and tidal turbines. Currently, their processing cycle includes a lengthy drying stage (≥15 h) to remove ambient moisture. This drying stage prevents void defect formation and, thereby, a reduction in mechanical properties; however, it constitutes up to 60% of the processing time. Little research has been published which studies the drying stage or its optimisation. In the present work, experimental and simulated analyses are used to investigate the effects of hygroscopicity in epoxy powder composites. Tests are performed to quantify the void content of dried and undried laminates and to measure its impact on transverse flexural strength. Dynamic vapour sorption analysis is used to study the sorption behaviour of the epoxy powder. It is shown that the epoxy powder is slightly hygroscopic (1.36 wt%) and exhibits sorption behaviour that is characteristic of glassy polymers. This results in up to 4.8% voids (by volume) if processed in an undried state, leading to a 43% reduction in transverse flexural strength. A modified linear driving force model is fitted to the desorption data and then implemented in existing process-simulation tools. The drying of a thick epoxy powder composite section is simulated to investigate the influence of powder sintering on the duration of the drying stage. Process simulations reveal that a standard drying cycle prematurely sinters the powder, which inhibits moisture release. By maintaining the powder state, simulations show that the drying cycle can be reduced to 5 h.
{"title":"Hygroscopicity in Epoxy Powder Composites","authors":"James.M. Maguire, Jin-Yu Wang, C. O. Ó Brádaigh","doi":"10.3390/powders3020011","DOIUrl":"https://doi.org/10.3390/powders3020011","url":null,"abstract":"Epoxy powders offer a low-cost way of manufacturing thick-section composite parts, such as those found in wind and tidal turbines. Currently, their processing cycle includes a lengthy drying stage (≥15 h) to remove ambient moisture. This drying stage prevents void defect formation and, thereby, a reduction in mechanical properties; however, it constitutes up to 60% of the processing time. Little research has been published which studies the drying stage or its optimisation. In the present work, experimental and simulated analyses are used to investigate the effects of hygroscopicity in epoxy powder composites. Tests are performed to quantify the void content of dried and undried laminates and to measure its impact on transverse flexural strength. Dynamic vapour sorption analysis is used to study the sorption behaviour of the epoxy powder. It is shown that the epoxy powder is slightly hygroscopic (1.36 wt%) and exhibits sorption behaviour that is characteristic of glassy polymers. This results in up to 4.8% voids (by volume) if processed in an undried state, leading to a 43% reduction in transverse flexural strength. A modified linear driving force model is fitted to the desorption data and then implemented in existing process-simulation tools. The drying of a thick epoxy powder composite section is simulated to investigate the influence of powder sintering on the duration of the drying stage. Process simulations reveal that a standard drying cycle prematurely sinters the powder, which inhibits moisture release. By maintaining the powder state, simulations show that the drying cycle can be reduced to 5 h.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal additive manufacturing technologies, such as Laser Powder-Bed Fusion, often rate as sustainable due to their high material efficiency. However, there are several drawbacks that reduce the overall sustainability and offer potential for improvement. One such drawback is waste emerging from the process. These smoulder particles form when the laser hits the powder-bed surface, are blown away from the part by the shielding gas stream and accumulate on the edge of the build chamber. Usually, smoulder does not contribute to the circular reuse of powder that was part of the powder-bed but was not integrated into a part. Instead, it marks an end-of-life state of powder. Significant amounts of smoulder accumulate depending on the irradiated area or the build volume in one job, respectively. This results in the waste of powder that was produced with low energy efficiency. This study investigates the question of whether smoulder can transform from waste to resource via common powder characterization methods and first build jobs using processed smoulder. The investigation of process-relevant powder properties like apparent density and flowability showed no significant difference between virgin powder and smoulder. Sample characterization indicated that neither porosity, surface quality nor mechanical properties deteriorate when samples contain about 50% smoulder. This allows for the reuse of smoulder in terms of powder characterization and part quality.
{"title":"Reuse of Smoulder in Laser Powder-Bed Fusion of AlSi10Mg—Powder Characterization and Sample Analysis","authors":"Oliver Maurer, Heiko Jacob, Dirk Bähre","doi":"10.3390/powders3020010","DOIUrl":"https://doi.org/10.3390/powders3020010","url":null,"abstract":"Metal additive manufacturing technologies, such as Laser Powder-Bed Fusion, often rate as sustainable due to their high material efficiency. However, there are several drawbacks that reduce the overall sustainability and offer potential for improvement. One such drawback is waste emerging from the process. These smoulder particles form when the laser hits the powder-bed surface, are blown away from the part by the shielding gas stream and accumulate on the edge of the build chamber. Usually, smoulder does not contribute to the circular reuse of powder that was part of the powder-bed but was not integrated into a part. Instead, it marks an end-of-life state of powder. Significant amounts of smoulder accumulate depending on the irradiated area or the build volume in one job, respectively. This results in the waste of powder that was produced with low energy efficiency. This study investigates the question of whether smoulder can transform from waste to resource via common powder characterization methods and first build jobs using processed smoulder. The investigation of process-relevant powder properties like apparent density and flowability showed no significant difference between virgin powder and smoulder. Sample characterization indicated that neither porosity, surface quality nor mechanical properties deteriorate when samples contain about 50% smoulder. This allows for the reuse of smoulder in terms of powder characterization and part quality.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140375237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the generalization of M. Yu. Balshin’s well-known equations in the framework of a discrete model of powder compaction process (PCP), two new die-compaction equations for powders have been derived that show the dependence of the compaction pressure p on the relative density ρ of the powder sample. The first equation, p=w(1−ρ0)(n−m)·(ρ−ρ0)n(1−ρ)m, contains, in addition to the initial density ρ0 of the powder in die, three constant parameters—w, n and m. The second equation in the form p=H1−ρ0b−c·ρ−ρ0b1−ρ0c−aρ−ρ0c also takes into account the initial density of the powder and contains four constant parameters H, a, b, and c. The values of the constant parameters in both equations are determined by fitting the theoretical curve according to these equations to the experimental powder compaction curve. The adequacy of the PCP description with these equations has been verified by approximating experimental data on the compaction of various powders, including usual metal powders such as iron, copper, and nickel, highly plastic powders such as tin and lead, a mixture of plastic powder (Ni) with non-plastic powder (Al2O3), nickel-plated alumina powder, as well as powder of a brittle compound, in particular titanium carbide TiC. The proposed equations make it possible to describe PCP with high accuracy, at which the coefficient of determination R2 reaches values from 0.9900 to 0.9999. The four-constant equation provides a very accurate description of PCP from start to finish when the density of the samples stops increasing once the pressure increases to an extremely high level, despite the presence of porosity.
{"title":"New Die-Compaction Equations for Powders as a Result of Known Equations Correction: Part 2—Modernization of M Yu Balshin’s Equations","authors":"Anatolii V. Laptiev","doi":"10.3390/powders3010009","DOIUrl":"https://doi.org/10.3390/powders3010009","url":null,"abstract":"Based on the generalization of M. Yu. Balshin’s well-known equations in the framework of a discrete model of powder compaction process (PCP), two new die-compaction equations for powders have been derived that show the dependence of the compaction pressure p on the relative density ρ of the powder sample. The first equation, p=w(1−ρ0)(n−m)·(ρ−ρ0)n(1−ρ)m, contains, in addition to the initial density ρ0 of the powder in die, three constant parameters—w, n and m. The second equation in the form p=H1−ρ0b−c·ρ−ρ0b1−ρ0c−aρ−ρ0c also takes into account the initial density of the powder and contains four constant parameters H, a, b, and c. The values of the constant parameters in both equations are determined by fitting the theoretical curve according to these equations to the experimental powder compaction curve. The adequacy of the PCP description with these equations has been verified by approximating experimental data on the compaction of various powders, including usual metal powders such as iron, copper, and nickel, highly plastic powders such as tin and lead, a mixture of plastic powder (Ni) with non-plastic powder (Al2O3), nickel-plated alumina powder, as well as powder of a brittle compound, in particular titanium carbide TiC. The proposed equations make it possible to describe PCP with high accuracy, at which the coefficient of determination R2 reaches values from 0.9900 to 0.9999. The four-constant equation provides a very accurate description of PCP from start to finish when the density of the samples stops increasing once the pressure increases to an extremely high level, despite the presence of porosity.","PeriodicalId":507225,"journal":{"name":"Powders","volume":" 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140389597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}