Privacy-Preserving Architectures for AI/ML Applications: Methods, Balances, and Illustrations

Harish Padmanaban
{"title":"Privacy-Preserving Architectures for AI/ML Applications: Methods, Balances, and Illustrations","authors":"Harish Padmanaban","doi":"10.60087/jaigs.vol03.issue01.p85","DOIUrl":null,"url":null,"abstract":"With the widespread integration of artificial intelligence (AI) and blockchain technologies, safeguarding privacy has become of paramount importance. These techniques not only ensure the confidentiality of individuals' data but also maintain the integrity and reliability of information. This study offers an introductory overview of AI and blockchain, highlighting their fusion and the subsequent emergence of privacy protection methodologies. It explores various application contexts, such as data encryption, de-identification, multi-tier distributed ledgers, and k-anonymity techniques. Moreover, the paper critically evaluates five essential dimensions of privacy protection systems within AI-blockchain integration: authorization management, access control, data security, network integrity, and scalability. Additionally, it conducts a comprehensive analysis of existing shortcomings, identifying their root causes and suggesting corresponding remedies. The study categorizes and synthesizes privacy protection methodologies based on AI-blockchain application contexts and technical frameworks. In conclusion, it outlines prospective avenues for the evolution of privacy protection technologies resulting from the integration of AI and blockchain, emphasizing the need to enhance efficiency and security for a more comprehensive safeguarding of privacy.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"137 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.vol03.issue01.p85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread integration of artificial intelligence (AI) and blockchain technologies, safeguarding privacy has become of paramount importance. These techniques not only ensure the confidentiality of individuals' data but also maintain the integrity and reliability of information. This study offers an introductory overview of AI and blockchain, highlighting their fusion and the subsequent emergence of privacy protection methodologies. It explores various application contexts, such as data encryption, de-identification, multi-tier distributed ledgers, and k-anonymity techniques. Moreover, the paper critically evaluates five essential dimensions of privacy protection systems within AI-blockchain integration: authorization management, access control, data security, network integrity, and scalability. Additionally, it conducts a comprehensive analysis of existing shortcomings, identifying their root causes and suggesting corresponding remedies. The study categorizes and synthesizes privacy protection methodologies based on AI-blockchain application contexts and technical frameworks. In conclusion, it outlines prospective avenues for the evolution of privacy protection technologies resulting from the integration of AI and blockchain, emphasizing the need to enhance efficiency and security for a more comprehensive safeguarding of privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能/ML 应用的隐私保护架构:方法、平衡和示例
随着人工智能(AI)和区块链技术的广泛融合,保护隐私变得至关重要。这些技术不仅能确保个人数据的保密性,还能维护信息的完整性和可靠性。本研究概述了人工智能和区块链,强调了它们的融合以及随后出现的隐私保护方法。它探讨了各种应用背景,如数据加密、去标识化、多层分布式账本和 k 匿名技术。此外,论文还对人工智能-区块链集成中隐私保护系统的五个基本维度进行了批判性评估:授权管理、访问控制、数据安全、网络完整性和可扩展性。此外,本文还对现有缺陷进行了全面分析,找出了其根本原因,并提出了相应的补救措施。本研究根据人工智能-区块链应用环境和技术框架,对隐私保护方法进行了分类和综合。最后,报告概述了人工智能与区块链融合后隐私保护技术发展的前景,强调需要提高效率和安全性,以更全面地保护隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1