Machine Learning Algorithms Scaling on Large-Scale Data Infrastructure

Harish Padmanaban
{"title":"Machine Learning Algorithms Scaling on Large-Scale Data Infrastructure","authors":"Harish Padmanaban","doi":"10.60087/jaigs.vol03.issue01.p26","DOIUrl":null,"url":null,"abstract":"Scalability is a critical aspect of deploying machine learning (ML) algorithms on large-scale data infrastructure. As datasets grow in size and complexity, organizations face challenges in efficiently processing and analyzing data to derive meaningful insights. This paper explores the strategies and techniques employed to scale ML algorithms effectively on extensive data infrastructure. From optimizing computational resources to implementing parallel processing frameworks, various approaches are examined to ensure the seamless integration of ML models with large-scale data systems.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"113 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.vol03.issue01.p26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scalability is a critical aspect of deploying machine learning (ML) algorithms on large-scale data infrastructure. As datasets grow in size and complexity, organizations face challenges in efficiently processing and analyzing data to derive meaningful insights. This paper explores the strategies and techniques employed to scale ML algorithms effectively on extensive data infrastructure. From optimizing computational resources to implementing parallel processing frameworks, various approaches are examined to ensure the seamless integration of ML models with large-scale data systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在大规模数据基础设施上扩展机器学习算法
可扩展性是在大规模数据基础设施上部署机器学习(ML)算法的一个关键方面。随着数据集的规模和复杂性不断增加,企业在高效处理和分析数据以获得有意义的见解方面面临着挑战。本文探讨了在大规模数据基础设施上有效扩展 ML 算法所采用的策略和技术。从优化计算资源到实施并行处理框架,本文研究了各种方法,以确保 ML 模型与大规模数据系统的无缝集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1