Malicious Social Bot Using Twitter Network Analysis in Django

N. Ezhil Arasi, Dr. G Manikandan, Ms. S. Hemalatha, Ms. Vilma Veronica
{"title":"Malicious Social Bot Using Twitter Network Analysis in Django","authors":"N. Ezhil Arasi, Dr. G Manikandan, Ms. S. Hemalatha, Ms. Vilma Veronica","doi":"10.32628/ijsrst52411222","DOIUrl":null,"url":null,"abstract":"Malicious social bots generate fake tweets and automate their social relationships either by pretending to be a followers or by creating multiple fake accounts with malicious activities. Moreover, malicious social bots post shortened malicious URLs in the tweets to redirect the requests of online social networking participants to some malicious servers. Hence, distinguishing malicious social bots from legitimate users is one of the most important tasks in the Twitter network. To detect malicious social bots, extracting URL-based features (such as URL redirection, frequency of shared URLs, and spam content in URL) consumes less amount of time in comparison with social graph-based features (which rely on the social interactions of users). Furthermore, malicious social bots cannot easily manipulate URL redirection chains. In this article, learning automata-based malicious social bot detection (LA-MSBD) algorithm is proposed by integrating a trust computation model with URL-based features for identifying trustworthy participants (users) in the Twitter network. The proposed trust computation model contains two parameters, namely, direct trust and indirect trust. Moreover, the direct trust is derived from Bayes’ theorem, and the indirect trust is derived from the Dempster– Shafer theory (DST) to determine the trustworthiness of each participant accurately. Finally, we shown the user tweet data in terms of graph visualization of bar chart and pie chart of the system. Experimental results shown the better performance of the system.              ","PeriodicalId":14387,"journal":{"name":"International Journal of Scientific Research in Science and Technology","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrst52411222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malicious social bots generate fake tweets and automate their social relationships either by pretending to be a followers or by creating multiple fake accounts with malicious activities. Moreover, malicious social bots post shortened malicious URLs in the tweets to redirect the requests of online social networking participants to some malicious servers. Hence, distinguishing malicious social bots from legitimate users is one of the most important tasks in the Twitter network. To detect malicious social bots, extracting URL-based features (such as URL redirection, frequency of shared URLs, and spam content in URL) consumes less amount of time in comparison with social graph-based features (which rely on the social interactions of users). Furthermore, malicious social bots cannot easily manipulate URL redirection chains. In this article, learning automata-based malicious social bot detection (LA-MSBD) algorithm is proposed by integrating a trust computation model with URL-based features for identifying trustworthy participants (users) in the Twitter network. The proposed trust computation model contains two parameters, namely, direct trust and indirect trust. Moreover, the direct trust is derived from Bayes’ theorem, and the indirect trust is derived from the Dempster– Shafer theory (DST) to determine the trustworthiness of each participant accurately. Finally, we shown the user tweet data in terms of graph visualization of bar chart and pie chart of the system. Experimental results shown the better performance of the system.              
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Django 中的 Twitter 网络分析开发恶意社交机器人
恶意社交机器人会生成虚假推文,并通过伪装成关注者或创建多个进行恶意活动的虚假账户来自动处理其社交关系。此外,恶意社交机器人还会在推文中发布缩短的恶意 URL,将在线社交网络参与者的请求重定向到一些恶意服务器。因此,区分恶意社交机器人和合法用户是 Twitter 网络中最重要的任务之一。要检测恶意社交机器人,提取基于 URL 的特征(如 URL 重定向、共享 URL 频率和 URL 中的垃圾内容)与基于社交图谱的特征(依赖于用户的社交互动)相比耗时较少。此外,恶意社交机器人无法轻易操纵 URL 重定向链。本文提出了基于学习自动机的恶意社交僵尸检测(LA-MSBD)算法,将信任计算模型与基于 URL 的特征相结合,用于识别 Twitter 网络中值得信任的参与者(用户)。所提出的信任计算模型包含两个参数,即直接信任和间接信任。此外,直接信任来自贝叶斯定理,间接信任来自 Dempster- Shafer 理论(DST),从而准确判断每个参与者的可信度。最后,我们用系统的柱状图和饼状图等可视化图表展示了用户推文数据。实验结果表明,该系统具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Radiation Dose Rate and Evaluation of Whole Body Scan SPECT/CT Images in Thyroid Carcinoma Radioablation Patients Using Radioisotope 131I Biodistribution and Absorption of Radiopharmaceutical 99mTc MDP in Various Bones of Lung Cancer Patients Using SPECT/CT Modalities Study of Intermolecular Interaction by Ultrasonic Measurements of 1-Butanol-Pyridine and Toluene-Pyridine at 303.15 To 323.15 K and Statistical Analysis of Liquid State Theories Review about Organic-Inorganic Perovskite Single Crystal : Synthesis Methods, Properties and Applications Machine Learning Based Liver Cirrhosis Detection Using Different Algorithm : A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1