Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric and Oceanic Science Letters Pub Date : 2025-01-01 DOI:10.1016/j.aosl.2024.100509
Haolan Ren , Fei Zheng , Tingwei Cao , Qiang Wang
{"title":"Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing","authors":"Haolan Ren ,&nbsp;Fei Zheng ,&nbsp;Tingwei Cao ,&nbsp;Qiang Wang","doi":"10.1016/j.aosl.2024.100509","DOIUrl":null,"url":null,"abstract":"<div><div>Atlantic Meridional Overturning Circulation (AMOC) plays a central role in long-term climate variations through its heat and freshwater transports, which can collapse under a rapid increase of greenhouse gas forcing in climate models. Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations. In this work, with a low-resolution earth system model, the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse. Through a new optimization strategy, the extra freshwater flux (FWF) parameter is determined to be the dominant one affecting the AMOC's variability. The traditional ensemble optimal interpolation (EnOI) data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO<sub>2</sub> forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC. The results show that, under an abrupt 4×CO<sub>2</sub> forcing in millennial simulations, the AMOC will first collapse and then re-establish by the default FWF parameter slowly. However, during the parameter adjustment process, the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC, according to their physical relationship with FWF on the interdecadal timescale.</div><div>摘要</div><div>大西洋经向翻转环流 (Atlantic Meridional Overturning Circulation, AMOC) 通过其经向的热量和水团输送, 在气候变化中起着关键作用. 然而, 气候模式模拟未来AMOC在温室气体强迫下的变化存在较大不确定性. 模式参数的不确定性是导致AMOC产生不确定性的主要因素之一. 因此, 本文采用简化的海气耦合模式首先探寻出模式中AMOC的最敏感参数为淡水通量系数 (Freshwater Flux, FWF), 再基于集合最优插值 (Ensemble Optimal Interpolation, EnOI) 探讨通过参数优化减小温室气体强迫下AMOC模拟不确定性的可行方案. 理想试验揭示了, 北大西洋海表温度和海表盐度在温室气体强迫下的增量可以有效地优化FWF, 进而使得AMOC相比默认参数能快速收敛, 减小其在未来气候预估中的不确定性.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"18 1","pages":"Article 100509"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000588","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atlantic Meridional Overturning Circulation (AMOC) plays a central role in long-term climate variations through its heat and freshwater transports, which can collapse under a rapid increase of greenhouse gas forcing in climate models. Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations. In this work, with a low-resolution earth system model, the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse. Through a new optimization strategy, the extra freshwater flux (FWF) parameter is determined to be the dominant one affecting the AMOC's variability. The traditional ensemble optimal interpolation (EnOI) data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO2 forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC. The results show that, under an abrupt 4×CO2 forcing in millennial simulations, the AMOC will first collapse and then re-establish by the default FWF parameter slowly. However, during the parameter adjustment process, the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC, according to their physical relationship with FWF on the interdecadal timescale.
摘要
大西洋经向翻转环流 (Atlantic Meridional Overturning Circulation, AMOC) 通过其经向的热量和水团输送, 在气候变化中起着关键作用. 然而, 气候模式模拟未来AMOC在温室气体强迫下的变化存在较大不确定性. 模式参数的不确定性是导致AMOC产生不确定性的主要因素之一. 因此, 本文采用简化的海气耦合模式首先探寻出模式中AMOC的最敏感参数为淡水通量系数 (Freshwater Flux, FWF), 再基于集合最优插值 (Ensemble Optimal Interpolation, EnOI) 探讨通过参数优化减小温室气体强迫下AMOC模拟不确定性的可行方案. 理想试验揭示了, 北大西洋海表温度和海表盐度在温室气体强迫下的增量可以有效地优化FWF, 进而使得AMOC相比默认参数能快速收敛, 减小其在未来气候预估中的不确定性.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化关键参数,在温室气体强迫迅速增加的情况下加速恢复 AMOC
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
期刊最新文献
Interannual variability of boreal summer intraseasonal oscillation over the northwestern Pacific influenced by the Pacific Meridional Mode Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing Satellite remote sensing reveals overwhelming recovery of forest from disturbances in Asia Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean Increase in the variability of terrestrial carbon uptake in response to enhanced future ENSO modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1