Multi-stage batch adsorption of acephate onto cauliflower like Fe3O4-MMT: Characterization and statistical optimization using response surface methodology
{"title":"Multi-stage batch adsorption of acephate onto cauliflower like Fe3O4-MMT: Characterization and statistical optimization using response surface methodology","authors":"R. Shiny Raj , K. Anoop Krishnan","doi":"10.1016/j.enmm.2024.100949","DOIUrl":null,"url":null,"abstract":"<div><p>Globally acephate (an organophosphate pesticide) contaminates water bodies, and detriment to the biota is cancer-causing and neurotoxic which needs to be safely removed. This study presents the synthesis and characterization of magnetic montmorillonite (Fe<sub>3</sub>O<sub>4</sub>-MMT) as an adsorbent for the adsorption of acephate. The features and characteristics of the nanocomposite were traced by XRD, SEM-EDX, gas sorption analysis, FTIR, and XRF. RSM techniques were used to identify the optimal process variables that result in the highest removal. The numerical optimization of optimum variables corresponds to an initial acephate concentration of 2 mg/L, pH 6 and material adsorbent dose of 0.5 g/L. The uptake of acephate achieved 83.18 % under optimum environs. Dual factors i.e., concentration and dosage remarked as vital parameters that affected the response from ANOVA. Results revealed that equilibrium adsorption data were best fitted with Langmuir and kinetic data were well described by pseudo-first order kinetic model. Thermodynamic parameters such as enthalpy, entropy and Gibb’s energy were evaluated and the effect of temperature on acephate adsorption was studied. Greater acephate adsorption onto on Fe<sub>3</sub>O<sub>4</sub> serves as an excellent material for pesticide mitigation.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"21 ","pages":"Article 100949"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Globally acephate (an organophosphate pesticide) contaminates water bodies, and detriment to the biota is cancer-causing and neurotoxic which needs to be safely removed. This study presents the synthesis and characterization of magnetic montmorillonite (Fe3O4-MMT) as an adsorbent for the adsorption of acephate. The features and characteristics of the nanocomposite were traced by XRD, SEM-EDX, gas sorption analysis, FTIR, and XRF. RSM techniques were used to identify the optimal process variables that result in the highest removal. The numerical optimization of optimum variables corresponds to an initial acephate concentration of 2 mg/L, pH 6 and material adsorbent dose of 0.5 g/L. The uptake of acephate achieved 83.18 % under optimum environs. Dual factors i.e., concentration and dosage remarked as vital parameters that affected the response from ANOVA. Results revealed that equilibrium adsorption data were best fitted with Langmuir and kinetic data were well described by pseudo-first order kinetic model. Thermodynamic parameters such as enthalpy, entropy and Gibb’s energy were evaluated and the effect of temperature on acephate adsorption was studied. Greater acephate adsorption onto on Fe3O4 serves as an excellent material for pesticide mitigation.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation