{"title":"Analysis of the earth’s surface deformation over the “Kalush” mine using SAR interferometry 2018-2022","authors":"D. Kukhtar","doi":"10.33841/1819-1339-1-47-110-117","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to analyze the current state of geodynamic activity of the earth’s surface in the territory of the city of Kalush based on satellite radar monitoring data for the period 2018-2022. Method. The input data for the study were 36 medium-resolution (C-band) radar images of the Sentinel-1A satellite. The method of persistent scatterers (PSInSAR), which is an advanced technology of differential interferometry (DInSAR), was used to process the results of radar acquisition. The PSI method was implemented using the Stanford Method for Persistent Scatterer (StaMPS) software package. The results. Maps of the average rates of deformation of the earth’s surface in the area of the mine fields of the “Kalush” mine were obtained. The rate of subsidence of the territories above the mining works reaches 4 mm/year. The accuracy of determining the deformation rates is an order of magnitude higher than their values, which indicates the reliability of the obtained results. The nature of subsidence, for most areas, has a linear model of deformation processes. The maximum rates of deformation of the earth’s surface are observed over the Khotyn sylvinite field, but the rates of subsidence have decreased significantly compared to the previous data of the monitoring carried out in 2016-2017. The scientific novelty consists in obtaining the updated results of the monitoring of the territories above the mining operations of the Kalush mine using the InSAR method for the period from June 2018 to December 2022. The practical significance of the research results is not only in determining the quantitative indicators of deformations, but also in obtaining data for further planning and improvement of the complex geodynamic monitoring system using ground and satellite measurements.","PeriodicalId":422474,"journal":{"name":"Modern achievements of geodesic science and industry","volume":"68 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern achievements of geodesic science and industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33841/1819-1339-1-47-110-117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to analyze the current state of geodynamic activity of the earth’s surface in the territory of the city of Kalush based on satellite radar monitoring data for the period 2018-2022. Method. The input data for the study were 36 medium-resolution (C-band) radar images of the Sentinel-1A satellite. The method of persistent scatterers (PSInSAR), which is an advanced technology of differential interferometry (DInSAR), was used to process the results of radar acquisition. The PSI method was implemented using the Stanford Method for Persistent Scatterer (StaMPS) software package. The results. Maps of the average rates of deformation of the earth’s surface in the area of the mine fields of the “Kalush” mine were obtained. The rate of subsidence of the territories above the mining works reaches 4 mm/year. The accuracy of determining the deformation rates is an order of magnitude higher than their values, which indicates the reliability of the obtained results. The nature of subsidence, for most areas, has a linear model of deformation processes. The maximum rates of deformation of the earth’s surface are observed over the Khotyn sylvinite field, but the rates of subsidence have decreased significantly compared to the previous data of the monitoring carried out in 2016-2017. The scientific novelty consists in obtaining the updated results of the monitoring of the territories above the mining operations of the Kalush mine using the InSAR method for the period from June 2018 to December 2022. The practical significance of the research results is not only in determining the quantitative indicators of deformations, but also in obtaining data for further planning and improvement of the complex geodynamic monitoring system using ground and satellite measurements.