{"title":"Thermal stability optimization of single-leg skutterudite-based thermoelectric devices based on lattice distortion effects","authors":"","doi":"10.1016/j.jmat.2024.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>Skutterudite-based (SKD-based) thermoelectric materials are well-known for their high figure-of-merit (<em>zT</em> value) in the intermediate temperature region. Based on the urgent need for long-term high-temperature service, the poor interfacial thermal stability when connected with the Cu electrodes has greatly limited its industrial application. In this work, we propose a novel alloying route for the barrier layers for p-type SKDs. A Fe<sub>80</sub>Cr<sub>17.5</sub>Mo<sub>2.5</sub><sub>0</sub>/p-SKD junction with matched coefficients of thermal expansion (CTE), high mechanical reliability, and low contact resistivity is obtained. The addition of large-scale Mo causes severe lattice distortion in the barrier alloy, which contributes to the sluggish elemental diffusion. Thus, after aging at 823 K for 600 h, the Fe<sub>80</sub>Cr<sub>17.5</sub>Mo<sub>2.5</sub> junction has a thinner reaction layer (∼25 μm), lower contact resistivity (∼3.8 μΩ·cm<sup>2</sup>), and higher shear strength (∼14 MPa), compared with the Mo-free (Fe<sub>80</sub>Cr<sub>20</sub>) barrier junction. Our finding opens a new insight for fabricating long-term high thermally stable SKD-based thermoelectric devices with desirable mechanical stability.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 2","pages":"Article 100859"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352847824000649/pdfft?md5=2669c71b2cacd9ab3748b570af89bb7e&pid=1-s2.0-S2352847824000649-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824000649","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Skutterudite-based (SKD-based) thermoelectric materials are well-known for their high figure-of-merit (zT value) in the intermediate temperature region. Based on the urgent need for long-term high-temperature service, the poor interfacial thermal stability when connected with the Cu electrodes has greatly limited its industrial application. In this work, we propose a novel alloying route for the barrier layers for p-type SKDs. A Fe80Cr17.5Mo2.50/p-SKD junction with matched coefficients of thermal expansion (CTE), high mechanical reliability, and low contact resistivity is obtained. The addition of large-scale Mo causes severe lattice distortion in the barrier alloy, which contributes to the sluggish elemental diffusion. Thus, after aging at 823 K for 600 h, the Fe80Cr17.5Mo2.5 junction has a thinner reaction layer (∼25 μm), lower contact resistivity (∼3.8 μΩ·cm2), and higher shear strength (∼14 MPa), compared with the Mo-free (Fe80Cr20) barrier junction. Our finding opens a new insight for fabricating long-term high thermally stable SKD-based thermoelectric devices with desirable mechanical stability.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.