Pub Date : 2025-04-24DOI: 10.1016/j.jmat.2025.101064
Zhicong Chen, Qianbiao Du, Guo Tian, Linzhao Ma, Longxiang Jiang, Chang Jiang, Zeyan Zhou, Hao Li
This study introduces a novel microwave dielectric ceramic, MgAl5/4(Li1/3Ti2/3)3/4O4, tailored for modern communication technologies. MgAl5/4(Li1/3Ti2/3)3/4O4 ceramics feature a composite spinel structure (Fd-3m space group) comprising MgAl2O4 and Li4Ti5O12 type phases. By substituting Al3+ of MgAl2O4 ceramic with the composite ion (Li1/3Ti2/3)3+, differences in elemental diffusion induced by sintering temperature (1200–1280 °C) significantly affect the microwave dielectric properties: a low εᵣ (11.8) and enhanced microwave properties (Q×f = 79,381 GHz and τf = –28.5×10−6/°C) at 1240 °C. With further optimization of the ceramics, a near-zero τf is realized in 0.93MgAl5/4(Li1/3Ti2/3)3/4O4-0.07CaTiO3 ceramics with excellent comprehensive performance (εr = 14.36, Q×f = 44,144 GHz). Building on this, a multi-band dielectric resonant antenna (DRA) was designed for applications in communication and aeronautical radio navigation, featuring a wide relative bandwidth of 39.37% (5.97–6.49 GHz and 7.19–9.83 GHz). This study presents an optimization strategy for obtaining microwave dielectric ceramics with low εr, high Q×f, excellent frequency-temperature stability, low sintering temperature, and low density.
{"title":"Tailoring microwave dielectric properties of MgAl5/4(Li1/3Ti2/3)3/4O4 ceramics for multi-band dielectric resonant antenna","authors":"Zhicong Chen, Qianbiao Du, Guo Tian, Linzhao Ma, Longxiang Jiang, Chang Jiang, Zeyan Zhou, Hao Li","doi":"10.1016/j.jmat.2025.101064","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101064","url":null,"abstract":"This study introduces a novel microwave dielectric ceramic, MgAl<sub>5/4</sub>(Li<sub>1/3</sub>Ti<sub>2/3</sub>)<sub>3/4</sub>O<sub>4</sub>, tailored for modern communication technologies. MgAl<sub>5/4</sub>(Li<sub>1/3</sub>Ti<sub>2/3</sub>)<sub>3/4</sub>O<sub>4</sub> ceramics feature a composite spinel structure (<em>Fd</em>-3<em>m</em> space group) comprising MgAl<sub>2</sub>O<sub>4</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> type phases. By substituting Al<sup>3+</sup> of MgAl<sub>2</sub>O<sub>4</sub> ceramic with the composite ion (Li<sub>1/3</sub>Ti<sub>2/3</sub>)<sup>3+</sup>, differences in elemental diffusion induced by sintering temperature (1200–1280 °C) significantly affect the microwave dielectric properties: a low <em>ε</em>ᵣ (11.8) and enhanced microwave properties (<em>Q</em>×<em>f</em> = 79,381 GHz and <em>τ</em><sub><em>f</em></sub> = –28.5×10<sup>−6</sup>/°C) at 1240 °C. With further optimization of the ceramics, a near-zero <em>τ</em><sub><em>f</em></sub> is realized in 0.93MgAl<sub>5/4</sub>(Li<sub>1/3</sub>Ti<sub>2/3</sub>)<sub>3/4</sub>O<sub>4</sub>-0.07CaTiO<sub>3</sub> ceramics with excellent comprehensive performance (<em>ε</em><sub>r</sub> = 14.36, <em>Q</em>×<em>f</em> = 44,144 GHz). Building on this, a multi-band dielectric resonant antenna (DRA) was designed for applications in communication and aeronautical radio navigation, featuring a wide relative bandwidth of 39.37% (5.97–6.49 GHz and 7.19–9.83 GHz). This study presents an optimization strategy for obtaining microwave dielectric ceramics with low <em>ε</em><sub>r</sub>, high <em>Q</em>×<em>f</em>, excellent frequency-temperature stability, low sintering temperature, and low density.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"41 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-24DOI: 10.1016/j.jmat.2025.101066
Yue Liu, Shuchang Ma, Zhengwei Yang, Duo Wu, Yali Zhao, Maxim Avdeev, Siqi Shi
Machine learning (ML) is widely applied to accelerate materials design and discovery due to its outperforming capability of data analysis and information extraction. However, experimental and computational errors typically lead to emerging data anomalies, harming the performance of ML models. Most currently used anomaly detection methods are purely data-driven, which has limited capability of learning complicated factors in materials data. Here, we propose a domain knowledge-assisted data anomaly detection (DKA-DAD) workflow, where materials domain knowledge is encoded as symbolic rules. Three detection models are designed for evaluating the correctness of individual descriptor value, correlation between descriptors, and similarity between samples, respectively, and one modification model is constructed for comprehensive governance. We construct 180 synthetic datasets by injecting noise into 60 structured materials datasets collected from materials ML studies, to validate its potential utility and applications. DKA-DAD achieves a 12% F1-score improvement in anomaly detection accuracy on synthetic datasets compared to purely data-driven approach and the ML models trained on materials datasets processed through DKA exhibit an average 9.6% improvement in R2 for the property prediction. Our work provides a data anomaly detecting approach under the guidance of materials domain knowledge towards accelerating materials design and discovery based on ML.
{"title":"Domain knowledge-assisted materials data anomaly detection towards constructing high-performance machine learning models","authors":"Yue Liu, Shuchang Ma, Zhengwei Yang, Duo Wu, Yali Zhao, Maxim Avdeev, Siqi Shi","doi":"10.1016/j.jmat.2025.101066","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101066","url":null,"abstract":"Machine learning (ML) is widely applied to accelerate materials design and discovery due to its outperforming capability of data analysis and information extraction. However, experimental and computational errors typically lead to emerging data anomalies, harming the performance of ML models. Most currently used anomaly detection methods are purely data-driven, which has limited capability of learning complicated factors in materials data. Here, we propose a domain knowledge-assisted data anomaly detection (DKA-DAD) workflow, where materials domain knowledge is encoded as symbolic rules. Three detection models are designed for evaluating the correctness of individual descriptor value, correlation between descriptors, and similarity between samples, respectively, and one modification model is constructed for comprehensive governance. We construct 180 synthetic datasets by injecting noise into 60 structured materials datasets collected from materials ML studies, to validate its potential utility and applications. DKA-DAD achieves a 12% F1-score improvement in anomaly detection accuracy on synthetic datasets compared to purely data-driven approach and the ML models trained on materials datasets processed through DKA exhibit an average 9.6% improvement in R<sup>2</sup> for the property prediction. Our work provides a data anomaly detecting approach under the guidance of materials domain knowledge towards accelerating materials design and discovery based on ML.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"14 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.jmat.2025.101065
Yutao Luo, Tianyang Zheng, Song Liu, Yunfei Liu, Yinong Lyu, Jin Luo
With the development of advanced electronic memory and the advocacy of environmental friendliness, lead-free relaxor ferroelectric capacitors with slim hysteresis loops have received great attention in high power energy storage applications. However, various emerging defects in Sr0.7Bi0.2TiO3 based relaxor ferroelectric films can result in inferior energy storage performance. In this work, Mn doping is utilized to modify the defects caused by the excessive Bi compensation in the Sr0.7Bi0.2TiO3 relaxor ferroelectric thin films. Those Mn doped Sr0.7Bi0.2TiO3 thin films exhibits significantly improved recoverable energy storage density by more than one order of magnitude with an ultrahigh energy storage density (126 J/cm3). By analyzing the change of the chemical environment and using the scanning transmission electron microscopy, we reveal these improved energy storage performances arises from the formation of defect dipoles of Mn2+ at B site with oxygen vacancies, suppressing the volume of oxygen vacancies and titanium vacancies simultaneously, and the slush-like “single domain” structure with fluctuated B-site cation displacements stabilized and confined in a single nano-sized crystal grain. This chemical modification strategy in this work can serve as a regular approach to suppress the defects and improve the energy storage performance in ferroelectric thin films with volatile elements.
{"title":"Ultrahigh energy storage performance via defect engineering in Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics","authors":"Yutao Luo, Tianyang Zheng, Song Liu, Yunfei Liu, Yinong Lyu, Jin Luo","doi":"10.1016/j.jmat.2025.101065","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101065","url":null,"abstract":"With the development of advanced electronic memory and the advocacy of environmental friendliness, lead-free relaxor ferroelectric capacitors with slim hysteresis loops have received great attention in high power energy storage applications. However, various emerging defects in Sr<sub>0.7</sub>Bi<sub>0.2</sub>TiO<sub>3</sub> based relaxor ferroelectric films can result in inferior energy storage performance. In this work, Mn doping is utilized to modify the defects caused by the excessive Bi compensation in the Sr<sub>0.7</sub>Bi<sub>0.2</sub>TiO<sub>3</sub> relaxor ferroelectric thin films. Those Mn doped Sr<sub>0.7</sub>Bi<sub>0.2</sub>TiO<sub>3</sub> thin films exhibits significantly improved recoverable energy storage density by more than one order of magnitude with an ultrahigh energy storage density (126 J/cm<sup>3</sup>). By analyzing the change of the chemical environment and using the scanning transmission electron microscopy, we reveal these improved energy storage performances arises from the formation of defect dipoles of Mn<sup>2+</sup> at B site with oxygen vacancies, suppressing the volume of oxygen vacancies and titanium vacancies simultaneously, and the slush-like “single domain” structure with fluctuated B-site cation displacements stabilized and confined in a single nano-sized crystal grain. This chemical modification strategy in this work can serve as a regular approach to suppress the defects and improve the energy storage performance in ferroelectric thin films with volatile elements.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"68 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-19DOI: 10.1016/j.jmat.2025.101063
Zhijun Jiang, Xueqing Wan, Bin Xu, Jorge Íñiguez-González, Laurent Bellaiche
The electrocaloric (EC) effect characterizes the change in temperature or entropy of a material under the application of an external electric field. Ferroelectric and multiferroic materials have attracted considerable interest due to their potential for efficient solid-state refrigeration in a broad range of applications. In this review, we present recent applications of first-principles-based effective Hamiltonian, second-principles method, and spin Heisenberg model to study the EC effect in ferroelectrics, relaxor ferroelectrics, and multiferroic materials. Specifically, these methods are used to investigate the EC effect in perovskite ferroelectrics Pb(Zr0.4Ti0.6)O3, (Ba0.5Sr0.5)TiO3, PbTiO3, BaTiO3 and PbTiO3/SrTiO3 superlattices, relaxor ferroelectrics Ba(Zr, Ti)O3 and Pb(Mg, Nb)O3, as well as rare-earth-substituted BiFeO3, BiCoO3 and BiFeO3 multiferroics, and Nd-substituted BiFeO3 antiferroelectric solid solutions. Large electrocaloric responses are predicted in some of these compounds. In addition, we review the phenomenological models that can be used to analyze and understand these EC effect results.
{"title":"Electrocaloric effects in ferroelectrics and multiferroics from first principles","authors":"Zhijun Jiang, Xueqing Wan, Bin Xu, Jorge Íñiguez-González, Laurent Bellaiche","doi":"10.1016/j.jmat.2025.101063","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101063","url":null,"abstract":"The electrocaloric (EC) effect characterizes the change in temperature or entropy of a material under the application of an external electric field. Ferroelectric and multiferroic materials have attracted considerable interest due to their potential for efficient solid-state refrigeration in a broad range of applications. In this review, we present recent applications of first-principles-based effective Hamiltonian, second-principles method, and spin Heisenberg model to study the EC effect in ferroelectrics, relaxor ferroelectrics, and multiferroic materials. Specifically, these methods are used to investigate the EC effect in perovskite ferroelectrics Pb(Zr<sub>0.4</sub>Ti<sub>0.6</sub>)O<sub>3</sub>, (Ba<sub>0.5</sub>Sr<sub>0.5</sub>)TiO<sub>3</sub>, PbTiO<sub>3</sub>, BaTiO<sub>3</sub> and PbTiO<sub>3</sub>/SrTiO<sub>3</sub> superlattices, relaxor ferroelectrics Ba(Zr, Ti)O<sub>3</sub> and Pb(Mg, Nb)O<sub>3</sub>, as well as rare-earth-substituted BiFeO<sub>3</sub>, BiCoO<sub>3</sub> and BiFeO<sub>3</sub> multiferroics, and Nd-substituted BiFeO<sub>3</sub> antiferroelectric solid solutions. Large electrocaloric responses are predicted in some of these compounds. In addition, we review the phenomenological models that can be used to analyze and understand these EC effect results.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"32 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-18DOI: 10.1016/j.jmat.2025.101062
Yan Liang, Chunbo Ru, Hua Tang, Xiaojian Zhao, Lu Tang, Shenman Yao, Yong Yang
Enhancing the room temperature gas sensing capabilities of semiconductor sensors through light excitation has emerged as a prominent research focus in recent years. However, challenges such as the high photo-generated charges recombination rate and poor visible light absorption of representative semiconductor gas sensing materials have posed significant issues. To address these challenges, Aurivillius type Bi2WO6 with exceptional visible light absorption was chosen as the model material to explore facet junctions in semiconductor gas sensors for the first time. The experiment successfully achieved the self-construction of facet junctions in Bi2WO6 single crystal microplates, exposing both {001} and {010} facets. It was observed that the facet junction, with an optimal facets proportion, not only controlled gas adsorption but also facilitated the efficient separation of photo-generated charges across the anisotropic facets through surface band bending and internal fields, thus enabling the efficient detection of acetic acid under visible light LED excitation at room temperature. Through first-principle calculations, in-situ infrared spectroscopy and other spectroscopic techniques, the gas sensing mechanism was systematically elucidated. This study offers new insights into enhancing the gas sensing performance of light-excited semiconductor gas sensors through facet junction design. Moreover, it significantly enriches our understanding of the microscopic-scale gas sensing mechanisms.
{"title":"Enhanced spatial charge separation and gas adsorption in Bi2WO6 facet junction for efficient visible light-excited gas detection at room temperature","authors":"Yan Liang, Chunbo Ru, Hua Tang, Xiaojian Zhao, Lu Tang, Shenman Yao, Yong Yang","doi":"10.1016/j.jmat.2025.101062","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101062","url":null,"abstract":"Enhancing the room temperature gas sensing capabilities of semiconductor sensors through light excitation has emerged as a prominent research focus in recent years. However, challenges such as the high photo-generated charges recombination rate and poor visible light absorption of representative semiconductor gas sensing materials have posed significant issues. To address these challenges, Aurivillius type Bi<sub>2</sub>WO<sub>6</sub> with exceptional visible light absorption was chosen as the model material to explore facet junctions in semiconductor gas sensors for the first time. The experiment successfully achieved the self-construction of facet junctions in Bi<sub>2</sub>WO<sub>6</sub> single crystal microplates, exposing both {001} and {010} facets. It was observed that the facet junction, with an optimal facets proportion, not only controlled gas adsorption but also facilitated the efficient separation of photo-generated charges across the anisotropic facets through surface band bending and internal fields, thus enabling the efficient detection of acetic acid under visible light LED excitation at room temperature. Through first-principle calculations, in-situ infrared spectroscopy and other spectroscopic techniques, the gas sensing mechanism was systematically elucidated. This study offers new insights into enhancing the gas sensing performance of light-excited semiconductor gas sensors through facet junction design. Moreover, it significantly enriches our understanding of the microscopic-scale gas sensing mechanisms.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"108 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
What is the nature of the electric (dielectric/ferroelectric) properties of CuInP2S6 (CIPS)? CIPS, considered an emerging two-dimensional (2D) ferroelectric, has been well explored in various properties and applications. However, the most important and fundamental nature, i.e. dielectric/ferroelectric property, has been controversial, because high-quality CIPS samples are grossly deficient. In this work, single crystal CIPS is successfully synthesized by the chemical vapour transport method, which presents “high quality” in terms of high purity, excellent crystallinity, uniform composition, and defect-free structure etc. that are confirmed through comprehensive characterization techniques. With performing high-quality single crystal, we fully uncover the intrinsic electric properties of CIPS through accurately identifying the atomic arrangement, electron configuration, magnetic, dielectric, and ferroelectric properties that should reach a consensus on such a disputed CIPS material. These findings serve as a pivotal benchmark for a comprehensive understanding of the inherent electric characteristics of CIPS, offering valuable insights for its future modifications and applications in various applications.
{"title":"High quality CuInP2S6 single crystal for intrinsic electric property","authors":"Changjin Guo, Yu Tan, Jiajun Zhu, Jiyang Xie, Chengding Gu, Wanbiao Hu","doi":"10.1016/j.jmat.2025.101067","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101067","url":null,"abstract":"What is the nature of the electric (dielectric/ferroelectric) properties of CuInP<sub>2</sub>S<sub>6</sub> (CIPS)? CIPS, considered an emerging two-dimensional (2D) ferroelectric, has been well explored in various properties and applications. However, the most important and fundamental nature, <em>i.e.</em> dielectric/ferroelectric property, has been controversial, because high-quality CIPS samples are grossly deficient. In this work, single crystal CIPS is successfully synthesized by the chemical vapour transport method, which presents “high quality” in terms of high purity, excellent crystallinity, uniform composition, and defect-free structure <em>etc</em>. that are confirmed through comprehensive characterization techniques. With performing high-quality single crystal, we fully uncover the intrinsic electric properties of CIPS through accurately identifying the atomic arrangement, electron configuration, magnetic, dielectric, and ferroelectric properties that should reach a consensus on such a disputed CIPS material. These findings serve as a pivotal benchmark for a comprehensive understanding of the inherent electric characteristics of CIPS, offering valuable insights for its future modifications and applications in various applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"17 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hafnium oxide–based ferroelectric materials emerged as promising candidates for constructing next-generation high-density memory devices due to their silicon compatibility. However, the high coercive field (Ec, typically exceeding 1.0 MV/cm) puts forward challenges to high operating voltage and limited endurance performance. To overcome these limitations, a strategy is utilized by applying an in-situ direct current electric field during rapid thermal process (RTP). This approach enables simultaneous reduction of coercive field and enhancement of ferroelectric polarization in Hf0.5Zr0.5O2 (HZO). Notably, a record-low Ec (∼0.79 MV/cm) is achieved among atomic layer deposition-grown Zr-doped HfO2 ferroelectric films, facilitating lower operation voltage, faster switching speed, and improved endurance characteristics. High-resolution transmission electron microscopy analysis reveals that the ferroelectric domains in samples through electric field assisted-RTP exhibit a relatively preferential out-of-plane orientation compared to normal RTP-treated samples, which is the underlying mechanism in reducing the coercive field and enhancing ferroelectric polarization. This study introduces a practical and effective method for optimizing the overall performance of HZO films, underscoring their potential for application in non-volatile memory technologies.
{"title":"Reduced coercive field and enhanced ferroelectric polarization of Hf0.5Zr0.5O2 film through electric-field-assisted rapid annealing","authors":"Jiachen Li, Weijin Pan, Zhengxu Zhu, Hansheng Zhu, Yuchen Wang, Shengchun Shen, Yuewei Yin, Xiaoguang Li","doi":"10.1016/j.jmat.2025.101061","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101061","url":null,"abstract":"Hafnium oxide–based ferroelectric materials emerged as promising candidates for constructing next-generation high-density memory devices due to their silicon compatibility. However, the high coercive field (<em>E</em><sub>c</sub>, typically exceeding 1.0 MV/cm) puts forward challenges to high operating voltage and limited endurance performance. To overcome these limitations, a strategy is utilized by applying an in-situ direct current electric field during rapid thermal process (RTP). This approach enables simultaneous reduction of coercive field and enhancement of ferroelectric polarization in Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO). Notably, a record-low <em>E</em><sub>c</sub> (∼0.79 MV/cm) is achieved among atomic layer deposition-grown Zr-doped HfO<sub>2</sub> ferroelectric films, facilitating lower operation voltage, faster switching speed, and improved endurance characteristics. High-resolution transmission electron microscopy analysis reveals that the ferroelectric domains in samples through electric field assisted-RTP exhibit a relatively preferential out-of-plane orientation compared to normal RTP-treated samples, which is the underlying mechanism in reducing the coercive field and enhancing ferroelectric polarization. This study introduces a practical and effective method for optimizing the overall performance of HZO films, underscoring their potential for application in non-volatile memory technologies.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"2 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143837305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-16DOI: 10.1016/j.jmat.2025.101060
Geng Cheng, Wenpei Li, Chengyan Liu, Jie Gao, Jun-Liang Chen, Jianhua Zhou, Xiaoyang Wang, Lei Miao
Two-dimensional (2D) materials such as metal chalcogenides have great potential as cathode catalyst materials for lithium oxygen batteries (LOBs) due to their large specific surface area and stable chemical properties. However, thus far, due to the lack of theoretical prediction methods, huge load on catalytic synthesis and performance evaluation is concerned. Herein, we reported a theoretical method for 2D metal chalcogenides as catalysts for LOBs using first principles density functional theory (DFT) calculations. We extracted key parameters that affect the overpotential, including Li–X bond energy (X represents chalcogen elements) and catalyst lattice constant, and theoretically predicted the catalytic performance. The DFT calculation results indicate that MoS2 with appropriate Li–X bond energy and lattice constant has the lowest theoretical overpotential, and its cyclic stability should be higher than other materials under the same conditions. Significantly, we experimentally validated the theoretical predictions presented above. The experimental results shows that pure MoS2 with 2H phase can stably work for more than 220 cycles at a current density of 500 mA/g, and the actual overpotential is lower than other metal chalcogenides. This work provides a swift pathway to accelerate searching high performance catalytic in LOBs.
{"title":"A new catalytic merit for prediction catalytic potential of 2D materials in Li-O2 batteries: Theoretical investigation and experimental identification","authors":"Geng Cheng, Wenpei Li, Chengyan Liu, Jie Gao, Jun-Liang Chen, Jianhua Zhou, Xiaoyang Wang, Lei Miao","doi":"10.1016/j.jmat.2025.101060","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101060","url":null,"abstract":"Two-dimensional (2D) materials such as metal chalcogenides have great potential as cathode catalyst materials for lithium oxygen batteries (LOBs) due to their large specific surface area and stable chemical properties. However, thus far, due to the lack of theoretical prediction methods, huge load on catalytic synthesis and performance evaluation is concerned. Herein, we reported a theoretical method for 2D metal chalcogenides as catalysts for LOBs using first principles density functional theory (DFT) calculations. We extracted key parameters that affect the overpotential, including Li–X bond energy (X represents chalcogen elements) and catalyst lattice constant, and theoretically predicted the catalytic performance. The DFT calculation results indicate that MoS<sub>2</sub> with appropriate Li–X bond energy and lattice constant has the lowest theoretical overpotential, and its cyclic stability should be higher than other materials under the same conditions. Significantly, we experimentally validated the theoretical predictions presented above. The experimental results shows that pure MoS<sub>2</sub> with 2H phase can stably work for more than 220 cycles at a current density of 500 mA/g, and the actual overpotential is lower than other metal chalcogenides. This work provides a swift pathway to accelerate searching high performance catalytic in LOBs.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"22 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143837272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-03DOI: 10.1016/j.jmat.2025.101059
Rundong Tian, Tianliang Zhou, Rong-Jun Xie
Laser-remote activated phosphor (LARP) converted solid state lighting is now developing towards high power density and super-brightness, and phosphor ceramic converters with high efficiency, high thermal conductivity, acceptable transmittance and suitable spectra are thus required. Y3Al5O12:Ce (YAG:Ce)-based ceramics are promising color converters to produce white light with a color temperature of 6000 K for vehicle headlamps, but the brightness and luminous efficiency are not well optimized. In this work, two series of Al2O3-YAG:Ce and Al2O3-(Gd,Y)AG:Ce transparent ceramics were fabricated by vacuum sintering, and their microstructure, thermal and optical properties were controlled by changing the Ce3+ or Al2O3 content as well the thickness of the ceramics. Both Al2O3-Y2.925Al5O12:Ce0.0175 (AY0.0175) and Al2O3-(Gd0.1Y2.89)Al5O12:Ce0.01 (AGY) ceramics containing 70% (in mass) Al2O3 show a luminance saturation threshold of 30.3 W/mm2 and 38.4 W/mm2, enabling to produce white light with a color temperature of 6000 K, luminous flux of 1928 lm and 3101 lm, luminous efficiency of 135.0 lm/W and 161.1 lm/W when pumped by blue laser diodes, respectively. This work provides a solution to finely control the composition, microstructure, and optical properties of transparent ceramics for super-high brightness laser-driven solid-state lighting.
{"title":"Laser-driven composite ceramic enabling superhigh‐luminance white light","authors":"Rundong Tian, Tianliang Zhou, Rong-Jun Xie","doi":"10.1016/j.jmat.2025.101059","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101059","url":null,"abstract":"Laser-remote activated phosphor (LARP) converted solid state lighting is now developing towards high power density and super-brightness, and phosphor ceramic converters with high efficiency, high thermal conductivity, acceptable transmittance and suitable spectra are thus required. Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce (YAG:Ce)-based ceramics are promising color converters to produce white light with a color temperature of 6000 K for vehicle headlamps, but the brightness and luminous efficiency are not well optimized. In this work, two series of Al<sub>2</sub>O<sub>3</sub>-YAG:Ce and Al<sub>2</sub>O<sub>3</sub>-(Gd,Y)AG:Ce transparent ceramics were fabricated by vacuum sintering, and their microstructure, thermal and optical properties were controlled by changing the Ce<sup>3+</sup> or Al<sub>2</sub>O<sub>3</sub> content as well the thickness of the ceramics. Both Al<sub>2</sub>O<sub>3</sub>-Y<sub>2.925</sub>Al<sub>5</sub>O<sub>12</sub>:Ce<sub>0.0175</sub> (AY0.0175) and Al<sub>2</sub>O<sub>3</sub>-(Gd<sub>0.1</sub>Y<sub>2.89</sub>)Al<sub>5</sub>O<sub>12</sub>:Ce<sub>0.01</sub> (AGY) ceramics containing 70% (in mass) Al<sub>2</sub>O<sub>3</sub> show a luminance saturation threshold of 30.3 W/mm<sup>2</sup> and 38.4 W/mm<sup>2</sup>, enabling to produce white light with a color temperature of 6000 K, luminous flux of 1928 lm and 3101 lm, luminous efficiency of 135.0 lm/W and 161.1 lm/W when pumped by blue laser diodes, respectively. This work provides a solution to finely control the composition, microstructure, and optical properties of transparent ceramics for super-high brightness laser-driven solid-state lighting.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"23 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid oxide fuel cells (SOFCs) are of paramount importance for developing green and sustainable energy systems. However, achieving stable nanoscale cathode catalysts under their typically high operating temperatures, normally exceeding 600 °C, remains a significant challenge. By introducing a small amount of RuCl3 into the cathode slurry, an in-situ transformation of the PrBaCo2O5+δ cathode catalyst can be induced from submicrometer-scale irregular particles into nanosheets during SOFC operation. These nanosheets feature a RuO2-modified surface layer, resulting in substantial improvements in both catalytic activity and operational durability. At 750 °C and 0.7 V, SOFCs employing conventional cathode catalysts exhibit a 6.1% degradation in power density over 110 hours, while those employing the nanosheet-structured catalysts achieve an 11.9% increase, ultimately stabilizing at a high-power density of 0.75 W/cm2. This work presents a simple and scalable strategy for constructing high-performance nanocatalysts and deepens our theoretical understanding of catalyst nanostructuring for SOFC applications.
固体氧化物燃料电池(SOFC)对于开发绿色和可持续能源系统至关重要。然而,在通常超过 600 °C 的高工作温度下实现稳定的纳米级阴极催化剂仍然是一项重大挑战。通过在阴极浆料中引入少量 RuCl3,可在 SOFC 运行过程中将 PrBaCo2O5+δ 阴极催化剂从亚微米级不规则颗粒原位转变为纳米片。这些纳米片具有 RuO2 修饰的表面层,从而大大提高了催化活性和运行耐久性。在 750 °C 和 0.7 V 条件下,使用传统阴极催化剂的 SOFC 在 110 小时内功率密度下降了 6.1%,而使用纳米片结构催化剂的 SOFC 功率密度提高了 11.9%,最终稳定在 0.75 W/cm2 的高功率密度。这项工作为构建高性能纳米催化剂提供了一种简单且可扩展的策略,并加深了我们对 SOFC 应用催化剂纳米结构的理论理解。
{"title":"In-situ transformation of a perovskite oxide from irregular particles into nanosheets for active and durable solid oxide fuel cell cathodes","authors":"Shuai Ma, Shengli Pang, Xudong He, Hao Lou, Kaijie Xu, Yaozheng Qian, Fang Yang, Yi Zhuang, Xuyao Luo, Lianxu Xu, Yifei Gao, Peijie Zhang, Qiangsheng Xiao, Chonglin Chen","doi":"10.1016/j.jmat.2025.101058","DOIUrl":"https://doi.org/10.1016/j.jmat.2025.101058","url":null,"abstract":"Solid oxide fuel cells (SOFCs) are of paramount importance for developing green and sustainable energy systems. However, achieving stable nanoscale cathode catalysts under their typically high operating temperatures, normally exceeding 600 °C, remains a significant challenge. By introducing a small amount of RuCl<sub>3</sub> into the cathode slurry, an in-situ transformation of the PrBaCo<sub>2</sub>O<sub>5+<em>δ</em></sub> cathode catalyst can be induced from submicrometer-scale irregular particles into nanosheets during SOFC operation. These nanosheets feature a RuO<sub>2</sub>-modified surface layer, resulting in substantial improvements in both catalytic activity and operational durability. At 750 °C and 0.7 V, SOFCs employing conventional cathode catalysts exhibit a 6.1% degradation in power density over 110 hours, while those employing the nanosheet-structured catalysts achieve an 11.9% increase, ultimately stabilizing at a high-power density of 0.75 W/cm<sup>2</sup>. This work presents a simple and scalable strategy for constructing high-performance nanocatalysts and deepens our theoretical understanding of catalyst nanostructuring for SOFC applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"38 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143758647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}