Hui Liu , Jillian Gilmartin , Michelle Zapp Sluis , Toru Kobari , Jay Rooker , Hongsheng Bi , Antonietta Quigg
{"title":"Dynamic oceanographic influences on zooplankton communities over the northern Gulf of Mexico continental shelf","authors":"Hui Liu , Jillian Gilmartin , Michelle Zapp Sluis , Toru Kobari , Jay Rooker , Hongsheng Bi , Antonietta Quigg","doi":"10.1016/j.seares.2024.102501","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic influences of ocean processes on distribution, abundance, and diversity of zooplankton communities were studied over the continental shelf in the northern Gulf of Mexico (GoM) from 2015 to 2017. Zooplankton sampling was conducted on four summer cruises in the northcentral GoM. Sampling was designed in waters potentially influenced by the Loop Current (LC) and/or Mississippi River discharge to assess the impacts of these two mesoscale features on the abundance and diversity of zooplankton. During the three-year study, the LC displayed distinct spatial-temporal variations in penetration and occurrence in the northern GoM. Environmental conditions (i.e., sea surface temperature, salinity, and dissolved oxygen) varied between months and years sampled, and were significantly different among cruises (ANOVA, <em>p</em> < 0.001). The majority of zooplankton consisted of calanoid copepods (65% ± 7.2%, mean ± SD), while non-copepod taxa were primarily chaetognaths, polychaetes, tunicates, and ostracods (23 ± 9.2%). Species abundance and diversity of zooplankton were significantly correlated with sea surface temperature, salinity, and dissolved oxygen (<em>p</em> < 0.05). Canonical correspondence analysis displayed significant associations between mesoscale features and dominant zooplankton groups among cruises and by taxa (Monte Carlo Permutation Test, <em>p</em> < 0.001). In addition, non-metric multidimensional scaling indicated that zooplankton assemblages were distinct, likely caused by Mississippi River plumes during the study period. As one of the few efforts to examine zooplankton dynamics at a low taxon level over the GoM continental shelf regarding the impact of mesoscale features, this study revealed seasonal (i.e. summer) and spatial patterns in distribution, abundance, and diversity of zooplankton communities subjected to the dynamic physicochemical conditions in the northern GoM, which will continue in a changing climate.</p></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"199 ","pages":"Article 102501"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1385110124000340/pdfft?md5=524f2eb40ef5d095cdd42d47a6cdfffb&pid=1-s2.0-S1385110124000340-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385110124000340","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic influences of ocean processes on distribution, abundance, and diversity of zooplankton communities were studied over the continental shelf in the northern Gulf of Mexico (GoM) from 2015 to 2017. Zooplankton sampling was conducted on four summer cruises in the northcentral GoM. Sampling was designed in waters potentially influenced by the Loop Current (LC) and/or Mississippi River discharge to assess the impacts of these two mesoscale features on the abundance and diversity of zooplankton. During the three-year study, the LC displayed distinct spatial-temporal variations in penetration and occurrence in the northern GoM. Environmental conditions (i.e., sea surface temperature, salinity, and dissolved oxygen) varied between months and years sampled, and were significantly different among cruises (ANOVA, p < 0.001). The majority of zooplankton consisted of calanoid copepods (65% ± 7.2%, mean ± SD), while non-copepod taxa were primarily chaetognaths, polychaetes, tunicates, and ostracods (23 ± 9.2%). Species abundance and diversity of zooplankton were significantly correlated with sea surface temperature, salinity, and dissolved oxygen (p < 0.05). Canonical correspondence analysis displayed significant associations between mesoscale features and dominant zooplankton groups among cruises and by taxa (Monte Carlo Permutation Test, p < 0.001). In addition, non-metric multidimensional scaling indicated that zooplankton assemblages were distinct, likely caused by Mississippi River plumes during the study period. As one of the few efforts to examine zooplankton dynamics at a low taxon level over the GoM continental shelf regarding the impact of mesoscale features, this study revealed seasonal (i.e. summer) and spatial patterns in distribution, abundance, and diversity of zooplankton communities subjected to the dynamic physicochemical conditions in the northern GoM, which will continue in a changing climate.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.