Changjun Yin , Jingjing He , Ahmed Adam Khalifa Gowi , Zhuo Li , Chenhang Zhou
{"title":"Effective stiffness matrix calculation of geocell layer and reinforcement mechanism analysis of geocell reinforced embankment","authors":"Changjun Yin , Jingjing He , Ahmed Adam Khalifa Gowi , Zhuo Li , Chenhang Zhou","doi":"10.1016/j.geotexmem.2024.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>The anisotropic effective stiffness matrix (ESM) of the unit cell (UC) of a geocell layer with different laying modes (denoted by <em>θ</em>), which cannot be measured directly by conventional tests but can be obtained by the mathematical homogenization method (MHM) on the UC of the geocell layer, is needed in simulation and design of geocell reinforced embankment. The components of the ESM are divided into two independent parts based on whether they depend on <em>θ</em>. Compared with the direct numerical simulation (DNS), the homogenized numerical simulation (HNS) of the embankment with the ESM reduced the calculation cost, and the settlement loading curves were in good agreement with the test curves. By analyzing the results of HNS, it was found that (1) the vertical stress diffusion effect is independent on <em>θ</em>, (2) the membrane effect is dependent on <em>θ</em>, and (3) two aspects of the lateral resistance effect were verified.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 704-724"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000311","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The anisotropic effective stiffness matrix (ESM) of the unit cell (UC) of a geocell layer with different laying modes (denoted by θ), which cannot be measured directly by conventional tests but can be obtained by the mathematical homogenization method (MHM) on the UC of the geocell layer, is needed in simulation and design of geocell reinforced embankment. The components of the ESM are divided into two independent parts based on whether they depend on θ. Compared with the direct numerical simulation (DNS), the homogenized numerical simulation (HNS) of the embankment with the ESM reduced the calculation cost, and the settlement loading curves were in good agreement with the test curves. By analyzing the results of HNS, it was found that (1) the vertical stress diffusion effect is independent on θ, (2) the membrane effect is dependent on θ, and (3) two aspects of the lateral resistance effect were verified.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.