首页 > 最新文献

Geotextiles and Geomembranes最新文献

英文 中文
Prediction method for lateral deformation of PVD-improved ground under vacuum preloading
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-04-05 DOI: 10.1016/j.geotexmem.2025.03.008
Fang Xu , Junfang Yang , Qichang Wu , Qi Yang , Yitian Lu , Wenqian Hao
A series of finite element analyses, conducted on the basis of modified triaxial tests incorporating radial drainage, were carried out to investigate the lateral deformation and stress state characteristics of prefabricated vertical drain (PVD) unit cells under vacuum preloading. The analyses revealed that the inward horizontal strain of the unit cell increases approximately linearly with the vacuum pressure (Pv) but decreases non-linearly with an increase in the initial vertical effective stress (σ′v0). The variations in the effective stress ratio, corresponding to the median excess pore water pressure during vacuum preloading of the PVD unit cell, were elucidated in relation to the Pv and σ′v0 using the simulation data. Relationships were established between the normalized horizontal strain and normalized effective stress ratio, as well as between the normalized stress ratio and a composite index parameter that quantitatively captures the effects of vacuum pressure, initial effective stress, and subsoil consolidation characteristics. These relationships facilitate the prediction of lateral deformation in PVD-improved grounds subjected to vacuum preloading, utilizing fundamental preloading conditions and soil properties. Finally, the proposed methodology was applied to analyze two field case histories, and its validity was confirmed by the close correspondence between the predicted and measured lateral deformation.
{"title":"Prediction method for lateral deformation of PVD-improved ground under vacuum preloading","authors":"Fang Xu ,&nbsp;Junfang Yang ,&nbsp;Qichang Wu ,&nbsp;Qi Yang ,&nbsp;Yitian Lu ,&nbsp;Wenqian Hao","doi":"10.1016/j.geotexmem.2025.03.008","DOIUrl":"10.1016/j.geotexmem.2025.03.008","url":null,"abstract":"<div><div>A series of finite element analyses, conducted on the basis of modified triaxial tests incorporating radial drainage, were carried out to investigate the lateral deformation and stress state characteristics of prefabricated vertical drain (PVD) unit cells under vacuum preloading. The analyses revealed that the inward horizontal strain of the unit cell increases approximately linearly with the vacuum pressure (<em>P</em><sub>v</sub>) but decreases non-linearly with an increase in the initial vertical effective stress (<em>σ′</em><sub>v0</sub>). The variations in the effective stress ratio, corresponding to the median excess pore water pressure during vacuum preloading of the PVD unit cell, were elucidated in relation to the <em>P</em><sub>v</sub> and <em>σ′</em><sub>v0</sub> using the simulation data. Relationships were established between the normalized horizontal strain and normalized effective stress ratio, as well as between the normalized stress ratio and a composite index parameter that quantitatively captures the effects of vacuum pressure, initial effective stress, and subsoil consolidation characteristics. These relationships facilitate the prediction of lateral deformation in PVD-improved grounds subjected to vacuum preloading, utilizing fundamental preloading conditions and soil properties. Finally, the proposed methodology was applied to analyze two field case histories, and its validity was confirmed by the close correspondence between the predicted and measured lateral deformation.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 1021-1034"},"PeriodicalIF":4.7,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143777638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connection failure between reinforcement and facing in geosynthetic reinforced soil bridge abutments: A case study
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-30 DOI: 10.1016/j.geotexmem.2025.03.009
Qiangqiang Huang , Xueyu Geng , Feifan Ren
Geosynthetic-reinforced soil (GRS) bridge abutments are increasingly used in transportation engineering. However, limited research has been conducted on the failure mechanisms of GRS bridge abutments, particularly the connection failures between reinforcement and facing. In this study, large-scale model tests were carried out to investigate the impact of connection failure between reinforcement and facing on the overall stability of GRS bridge abutments. The tests focused on a weaker connection configuration using low-strength cable ties subjected to high vertical loads. Photographic analysis was employed to document deformation and failure processes, while additional data were collected via sensors to monitor settlement, lateral displacement, and strain behavior during loading. The results indicated that inadequate connections between reinforcement and facing could result in progressive deformation, panel detachment, backfill leakage, and collapse under high loads. These findings underscore the importance of a strong connection between reinforcement and facing for maintaining structural stability. To address these issues, improved measures were proposed and validated, demonstrating significant enhancements in load-bearing performance and resilience.
土工合成材料加固土(GRS)桥墩在交通工程中的应用越来越广泛。然而,有关土工合成材料加固桥台失效机理的研究,尤其是加固层与面层之间的连接失效的研究还很有限。在本研究中,我们进行了大规模的模型试验,以研究钢筋和面层之间的连接失效对 GRS 桥墩整体稳定性的影响。测试主要针对在高垂直荷载下使用低强度拉索的较弱连接结构。采用照片分析记录变形和失效过程,同时通过传感器收集其他数据,以监测加载期间的沉降、横向位移和应变行为。结果表明,在高荷载作用下,钢筋和面层之间的连接不足会导致渐进变形、面板脱落、回填渗漏和坍塌。这些发现强调了钢筋和面层之间牢固连接对于保持结构稳定性的重要性。为解决这些问题,我们提出了改进措施并进行了验证,结果表明这些措施显著提高了承重性能和回弹性。
{"title":"Connection failure between reinforcement and facing in geosynthetic reinforced soil bridge abutments: A case study","authors":"Qiangqiang Huang ,&nbsp;Xueyu Geng ,&nbsp;Feifan Ren","doi":"10.1016/j.geotexmem.2025.03.009","DOIUrl":"10.1016/j.geotexmem.2025.03.009","url":null,"abstract":"<div><div>Geosynthetic-reinforced soil (GRS) bridge abutments are increasingly used in transportation engineering. However, limited research has been conducted on the failure mechanisms of GRS bridge abutments, particularly the connection failures between reinforcement and facing. In this study, large-scale model tests were carried out to investigate the impact of connection failure between reinforcement and facing on the overall stability of GRS bridge abutments. The tests focused on a weaker connection configuration using low-strength cable ties subjected to high vertical loads. Photographic analysis was employed to document deformation and failure processes, while additional data were collected via sensors to monitor settlement, lateral displacement, and strain behavior during loading. The results indicated that inadequate connections between reinforcement and facing could result in progressive deformation, panel detachment, backfill leakage, and collapse under high loads. These findings underscore the importance of a strong connection between reinforcement and facing for maintaining structural stability. To address these issues, improved measures were proposed and validated, demonstrating significant enhancements in load-bearing performance and resilience.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 974-984"},"PeriodicalIF":4.7,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the dynamic performance of heavy-load railway reinforced subgrade under flood condition
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-30 DOI: 10.1016/j.geotexmem.2025.03.005
Lihua Li, Kai Sun, Mengqian Xu, Henglin Xiao, Shuguang Jiang
To mitigate the subgrade deterioration induced by water infiltration, geosynthetics are employed to reinforce overloaded railway subgrades. Indoor model experiments were conducted to simulate dynamic loads under different axle weights, investigating the impacts of immersion on the dynamic characteristics of reinforced subgrades. Results demonstrated that immersion significantly increased the subgrade's stress, settlement, and acceleration. Compared to submerged unreinforced subgrades after immersion, the geocell-reinforced subgrade exhibited a 33 % reduction in additional stress, while the composite-reinforced subgrade, comprising geocell and geotextile, exhibited a 35 % decrease. The geotextile was placed beneath the ballast layer, with the geocell positioned below the geotextile. Additionally, settlement at the middle sleeper was reduced by 29 % for the geocell-reinforced subgrade under 30 t load and 38 % for the composite-reinforced subgrade, demonstrating that reinforcement enhanced subgrade strength, stabilized the upper structure, and mitigated subgrade acceleration. After immersion, geotextiles play a crucial role in maintaining the integrity of the ballast layer and minimizing ballast contamination. A modified model for the additional stress distribution within the ballast layer has been proposed, whereby the additional stress at any point outside the projected surface of the ballast layer can be calculated based on the distances from both the side and front of the sleeper.
{"title":"Study on the dynamic performance of heavy-load railway reinforced subgrade under flood condition","authors":"Lihua Li,&nbsp;Kai Sun,&nbsp;Mengqian Xu,&nbsp;Henglin Xiao,&nbsp;Shuguang Jiang","doi":"10.1016/j.geotexmem.2025.03.005","DOIUrl":"10.1016/j.geotexmem.2025.03.005","url":null,"abstract":"<div><div>To mitigate the subgrade deterioration induced by water infiltration, geosynthetics are employed to reinforce overloaded railway subgrades. Indoor model experiments were conducted to simulate dynamic loads under different axle weights, investigating the impacts of immersion on the dynamic characteristics of reinforced subgrades. Results demonstrated that immersion significantly increased the subgrade's stress, settlement, and acceleration. Compared to submerged unreinforced subgrades after immersion, the geocell-reinforced subgrade exhibited a 33 % reduction in additional stress, while the composite-reinforced subgrade, comprising geocell and geotextile, exhibited a 35 % decrease. The geotextile was placed beneath the ballast layer, with the geocell positioned below the geotextile. Additionally, settlement at the middle sleeper was reduced by 29 % for the geocell-reinforced subgrade under 30 t load and 38 % for the composite-reinforced subgrade, demonstrating that reinforcement enhanced subgrade strength, stabilized the upper structure, and mitigated subgrade acceleration. After immersion, geotextiles play a crucial role in maintaining the integrity of the ballast layer and minimizing ballast contamination. A modified model for the additional stress distribution within the ballast layer has been proposed, whereby the additional stress at any point outside the projected surface of the ballast layer can be calculated based on the distances from both the side and front of the sleeper.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 985-998"},"PeriodicalIF":4.7,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative numerical analysis of anti-liquefaction in sandy soil reinforced with OSC and GESC under sinusoidal loading
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-29 DOI: 10.1016/j.geotexmem.2025.03.007
Xiaocong Cai , Ling Zhang , Zijian Yang , Binbing Mao
Three-dimensional numerical models are developed to investigate the anti-liquefaction of ordinary (OSCs) and geosynthetic-encased (GESCs) stone columns in sandy soil under sinusoidal loading using the fluid-solid coupling method. The validated models capture and compare the vertical and radial deformation, excess pore water pressure (EPWP), and vertical effective stress of OSC, GESC, and sandy soil. Furthermore, ten essential factors are selected to conduct the parametric study. Numerical results reveal that GESC is more suitable for improving sandy soil and resisting dynamic load considering the deformation and EPWP. The bulging deformation is no longer the primary reason for failure. The partial encasement (e.g., 1-2D, D = column diameter) and short floating and end-bearing GESCs (e.g., 1-2.5D) are not recommended for reinforcing the sandy soil. GESC is more sensitive to low-frequency and high-amplitude loads, with shear and bending, whereas displays a block movement under higher frequency and lower amplitude loading. The change in loading amplitude is more disadvantageous to GESC than loading frequency. GESC with a large diameter cannot effectively resist the dynamic loads.
{"title":"Comparative numerical analysis of anti-liquefaction in sandy soil reinforced with OSC and GESC under sinusoidal loading","authors":"Xiaocong Cai ,&nbsp;Ling Zhang ,&nbsp;Zijian Yang ,&nbsp;Binbing Mao","doi":"10.1016/j.geotexmem.2025.03.007","DOIUrl":"10.1016/j.geotexmem.2025.03.007","url":null,"abstract":"<div><div>Three-dimensional numerical models are developed to investigate the anti-liquefaction of ordinary (OSCs) and geosynthetic-encased (GESCs) stone columns in sandy soil under sinusoidal loading using the fluid-solid coupling method. The validated models capture and compare the vertical and radial deformation, excess pore water pressure (EPWP), and vertical effective stress of OSC, GESC, and sandy soil. Furthermore, ten essential factors are selected to conduct the parametric study. Numerical results reveal that GESC is more suitable for improving sandy soil and resisting dynamic load considering the deformation and EPWP. The bulging deformation is no longer the primary reason for failure. The partial encasement (e.g., 1-2<em>D</em>, <em>D</em> = column diameter) and short floating and end-bearing GESCs (e.g., 1-2.5<em>D</em>) are not recommended for reinforcing the sandy soil. GESC is more sensitive to low-frequency and high-amplitude loads, with shear and bending, whereas displays a block movement under higher frequency and lower amplitude loading. The change in loading amplitude is more disadvantageous to GESC than loading frequency. GESC with a large diameter cannot effectively resist the dynamic loads.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 950-973"},"PeriodicalIF":4.7,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143724657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model tests on wicking geosynthetic composite reinforced bases over weak subgrade
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-28 DOI: 10.1016/j.geotexmem.2025.03.006
Minghao Liu , Jiming Liu , Sam Bhat , Yongxuan Gao , Cheng Lin
Road performance is significantly enhanced by incorporating geosynthetics through their reinforcement and drainage functions. This study introduces a novel geosynthetic that integrates these functions. It is made of biaxial polypropylene geogrids heat-bonded to wicking nonwoven geotextiles (WNWGs). WNWGs are chemically treated to be hydrophilic and thus possess rapid wetting and wicking properties while preserving the large lateral drainage functionality of conventional nonwoven geotextiles. To assess the combined reinforcement and drainage performance of this material, a series of model tests including rainfall simulation and plate loading tests were performed on the WNWG-geogrid composite reinforced bases over weak subgrade using a customized model test apparatus. The results confirmed that the inclusion of wicking geosynthetic composite significantly enhanced drainage, stiffness, and bearing capacity of road bases compared to the conventional nonwoven geotextile-geogrid reinforcement and the unreinforced condition. The modulus improvement factor (MIF) for this wicking composite was 2.74 as compared to 1.46 for the conventional nonwoven geotextile-geogrid reinforcement. The findings from this study demonstrate the promising performance of this new composite and provide a valuable reference for full-scale tests and applications on roads.
{"title":"Model tests on wicking geosynthetic composite reinforced bases over weak subgrade","authors":"Minghao Liu ,&nbsp;Jiming Liu ,&nbsp;Sam Bhat ,&nbsp;Yongxuan Gao ,&nbsp;Cheng Lin","doi":"10.1016/j.geotexmem.2025.03.006","DOIUrl":"10.1016/j.geotexmem.2025.03.006","url":null,"abstract":"<div><div>Road performance is significantly enhanced by incorporating geosynthetics through their reinforcement and drainage functions. This study introduces a novel geosynthetic that integrates these functions. It is made of biaxial polypropylene geogrids heat-bonded to wicking nonwoven geotextiles (WNWGs). WNWGs are chemically treated to be hydrophilic and thus possess rapid wetting and wicking properties while preserving the large lateral drainage functionality of conventional nonwoven geotextiles. To assess the combined reinforcement and drainage performance of this material, a series of model tests including rainfall simulation and plate loading tests were performed on the WNWG-geogrid composite reinforced bases over weak subgrade using a customized model test apparatus. The results confirmed that the inclusion of wicking geosynthetic composite significantly enhanced drainage, stiffness, and bearing capacity of road bases compared to the conventional nonwoven geotextile-geogrid reinforcement and the unreinforced condition. The modulus improvement factor (MIF) for this wicking composite was 2.74 as compared to 1.46 for the conventional nonwoven geotextile-geogrid reinforcement. The findings from this study demonstrate the promising performance of this new composite and provide a valuable reference for full-scale tests and applications on roads.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 938-949"},"PeriodicalIF":4.7,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical state mechanics-based arching model for pile-supported embankments
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-26 DOI: 10.1016/j.geotexmem.2025.03.002
Tuan A. Pham , Abdollah Tabaroei , Daniel Dias , Jie Han
The study and application of soil arching theory in geosynthetic-reinforced pile-supported (GRPS) embankments have gained increasing attention, as accurate arching estimation significantly influences load-deflection behavior of structures. While most existing models rely on Rankine's earth pressure theory, which applies primarily to granular soils and neglects cohesion effects. This paper employs three-dimensional numerical simulations to examine the impact of soil cohesion on soil arching mechanisms in pile-supported embankments. Results indicate that cohesion enhances load transfer to piles, with arching efficacy increasing nonlinearly before stabilizing at higher cohesion values. Building on these findings, the ground reaction curve (GRC) model is proposed to predict arching behavior in both cohesive and non-cohesive embankments at various deformation stages. By integrating critical state soil mechanics with the concentric arch model, the transition between maximum and critical arching states is captured through changes in the mobilized friction angle with relative displacement. Model validation against two well-instrumented case studies demonstrates its accuracy, particularly in accounting for soil cohesion. Moreover, the maximum arching model better predicts GRPS embankments under small deformations (relative displacement <4 %), while the critical arching model is more suitable for large deformations (relative displacement >6 %). The proposed model effectively captures arching behavior improvements in both cohesive and non-cohesive soils.
{"title":"Critical state mechanics-based arching model for pile-supported embankments","authors":"Tuan A. Pham ,&nbsp;Abdollah Tabaroei ,&nbsp;Daniel Dias ,&nbsp;Jie Han","doi":"10.1016/j.geotexmem.2025.03.002","DOIUrl":"10.1016/j.geotexmem.2025.03.002","url":null,"abstract":"<div><div>The study and application of soil arching theory in geosynthetic-reinforced pile-supported (GRPS) embankments have gained increasing attention, as accurate arching estimation significantly influences load-deflection behavior of structures. While most existing models rely on Rankine's earth pressure theory, which applies primarily to granular soils and neglects cohesion effects. This paper employs three-dimensional numerical simulations to examine the impact of soil cohesion on soil arching mechanisms in pile-supported embankments. Results indicate that cohesion enhances load transfer to piles, with arching efficacy increasing nonlinearly before stabilizing at higher cohesion values. Building on these findings, the ground reaction curve (GRC) model is proposed to predict arching behavior in both cohesive and non-cohesive embankments at various deformation stages. By integrating critical state soil mechanics with the concentric arch model, the transition between maximum and critical arching states is captured through changes in the mobilized friction angle with relative displacement. Model validation against two well-instrumented case studies demonstrates its accuracy, particularly in accounting for soil cohesion. Moreover, the maximum arching model better predicts GRPS embankments under small deformations (relative displacement &lt;4 %), while the critical arching model is more suitable for large deformations (relative displacement &gt;6 %). The proposed model effectively captures arching behavior improvements in both cohesive and non-cohesive soils.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 909-937"},"PeriodicalIF":4.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consolidation of slurry treated by PHDs-VP incorporating development process of clogged zone
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-22 DOI: 10.1016/j.geotexmem.2025.03.003
Kang Yang , Mengmeng Lu , Kuo Li , Xiusong Shi
The prefabricated horizontal drains combined with vacuum preloading (PHDs-VP) method exhibits significant benefits in dredged slurry treatment. This study introduces an analytical model of slurry consolidation treated by PHDs-VP. In this model, the PHD is treated as a permeable boundary with a vacuum pressure. The governing equations are established by dividing the analytical unit into normal zone and clogged zone, and by incorporating the development process of the clogged zone. Numerical solutions are obtained utilizing the finite difference method. The accuracy and reliability of the solutions are validated through both degradation analysis and experimental verification. Furthermore, a parametrical analysis is conducted to investigate the influence of several key parameters on consolidation behavior. The results indicate that the clogging effect significantly retards the consolidation process, with a lower permeability coefficient or a greater thickness of the clogged zone resulting in a more pronounced reduction in the consolidation rate. Additionally, the consolidation rate decreases with the accelerated development of the clogged zone, and this effect becomes more pronounced with denser PHDs layout.
{"title":"Consolidation of slurry treated by PHDs-VP incorporating development process of clogged zone","authors":"Kang Yang ,&nbsp;Mengmeng Lu ,&nbsp;Kuo Li ,&nbsp;Xiusong Shi","doi":"10.1016/j.geotexmem.2025.03.003","DOIUrl":"10.1016/j.geotexmem.2025.03.003","url":null,"abstract":"<div><div>The prefabricated horizontal drains combined with vacuum preloading (PHDs-VP) method exhibits significant benefits in dredged slurry treatment. This study introduces an analytical model of slurry consolidation treated by PHDs-VP. In this model, the PHD is treated as a permeable boundary with a vacuum pressure. The governing equations are established by dividing the analytical unit into normal zone and clogged zone, and by incorporating the development process of the clogged zone. Numerical solutions are obtained utilizing the finite difference method. The accuracy and reliability of the solutions are validated through both degradation analysis and experimental verification. Furthermore, a parametrical analysis is conducted to investigate the influence of several key parameters on consolidation behavior. The results indicate that the clogging effect significantly retards the consolidation process, with a lower permeability coefficient or a greater thickness of the clogged zone resulting in a more pronounced reduction in the consolidation rate. Additionally, the consolidation rate decreases with the accelerated development of the clogged zone, and this effect becomes more pronounced with denser PHDs layout.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 897-908"},"PeriodicalIF":4.7,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143682583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of a bench on leakage through a cover: A field and numerical assessment
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-15 DOI: 10.1016/j.geotexmem.2025.02.005
Y.H. Fan , R. Kerry Rowe , R.W.I. Brachman , Jamie F. VanGulck
Field experiments are conducted to quantify the leakage through an 11-mm-diameter hole in the liner on slopes with and without a bench under waste cover conditions. Over 14 months, with a total precipitation of 947 mm, a 0.68 m bench on a 4H: 1V slope results in a 43-fold increase in leakage (from 6.5 L to 282 L) compared to the reference section without a bench. Substantial leakage is attributed to snowmelt occurring at low temperatures. 3D numerical modelling is conducted and shows good agreement with the measured leakage induced by both rainfall and snowmelt. Parametric studies are conducted to further analyze the impact of hole locations, slope length, and slope gradient on leakage. The validated numerical model is used to predict potential leakage in a real case scenario, which features benches formed by differential settlement observed after 3-year service as a landfill cover. This paper contributes to enhancing leakage prediction so as to optimize the design of slope and bench configurations in waste covers.
{"title":"The effect of a bench on leakage through a cover: A field and numerical assessment","authors":"Y.H. Fan ,&nbsp;R. Kerry Rowe ,&nbsp;R.W.I. Brachman ,&nbsp;Jamie F. VanGulck","doi":"10.1016/j.geotexmem.2025.02.005","DOIUrl":"10.1016/j.geotexmem.2025.02.005","url":null,"abstract":"<div><div>Field experiments are conducted to quantify the leakage through an 11-mm-diameter hole in the liner on slopes with and without a bench under waste cover conditions. Over 14 months, with a total precipitation of 947 mm, a 0.68 m bench on a 4H: 1V slope results in a 43-fold increase in leakage (from 6.5 L to 282 L) compared to the reference section without a bench. Substantial leakage is attributed to snowmelt occurring at low temperatures. 3D numerical modelling is conducted and shows good agreement with the measured leakage induced by both rainfall and snowmelt. Parametric studies are conducted to further analyze the impact of hole locations, slope length, and slope gradient on leakage. The validated numerical model is used to predict potential leakage in a real case scenario, which features benches formed by differential settlement observed after 3-year service as a landfill cover. This paper contributes to enhancing leakage prediction so as to optimize the design of slope and bench configurations in waste covers.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 882-896"},"PeriodicalIF":4.7,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear behavior of saline soil-geotextile interfaces under freeze-thaw cycles
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-10 DOI: 10.1016/j.geotexmem.2025.03.001
Junli Gao, Lai Pan, Feiyu Liu, Yan Yang
Volume changes in soil caused by freeze-thaw cycles can affect the shear performance of the saline soil-geotextile interface. To investigate this issue, the study examined changes in shear strength, deformation characteristics, and failure modes of the saline soil-geotextile interface under different numbers of freeze-thaw cycles. The experimental results indicate that with the increase in freeze-thaw cycles, the shear stiffness of the interface initially increases and then decreases, demonstrating the reduction in elasticity and resistance to deformation caused by freeze-thaw cycles. And the enhancement of normal stress can effectively increase the density of the soil and the adhesion at the interface, thereby improving shear stiffness. Meanwhile, the salt content in the soil also significantly impacts the mechanical properties, with notable changes in the dynamic characteristics of the interface as the salt content varies. Furthermore, after freeze-thaw actions, the soil becomes loose, reduces in integrity, features uneven surfaces, and sees increased internal porosity leading to slip surfaces. Trend analysis from this study provides new insights into the failure mechanisms at the saline soil-geotextile interface.
{"title":"Shear behavior of saline soil-geotextile interfaces under freeze-thaw cycles","authors":"Junli Gao,&nbsp;Lai Pan,&nbsp;Feiyu Liu,&nbsp;Yan Yang","doi":"10.1016/j.geotexmem.2025.03.001","DOIUrl":"10.1016/j.geotexmem.2025.03.001","url":null,"abstract":"<div><div>Volume changes in soil caused by freeze-thaw cycles can affect the shear performance of the saline soil-geotextile interface. To investigate this issue, the study examined changes in shear strength, deformation characteristics, and failure modes of the saline soil-geotextile interface under different numbers of freeze-thaw cycles. The experimental results indicate that with the increase in freeze-thaw cycles, the shear stiffness of the interface initially increases and then decreases, demonstrating the reduction in elasticity and resistance to deformation caused by freeze-thaw cycles. And the enhancement of normal stress can effectively increase the density of the soil and the adhesion at the interface, thereby improving shear stiffness. Meanwhile, the salt content in the soil also significantly impacts the mechanical properties, with notable changes in the dynamic characteristics of the interface as the salt content varies. Furthermore, after freeze-thaw actions, the soil becomes loose, reduces in integrity, features uneven surfaces, and sees increased internal porosity leading to slip surfaces. Trend analysis from this study provides new insights into the failure mechanisms at the saline soil-geotextile interface.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 867-881"},"PeriodicalIF":4.7,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of rainfall and drying periods on the performance of a large-scale segmental GRS wall model built with poorly draining local soil
IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Pub Date : 2025-03-09 DOI: 10.1016/j.geotexmem.2025.02.003
M.C. Santos , Yoo C , F.H.M. Portelinha
The use of poorly draining local soils as backfill material in geosynthetic reinforced soil walls has become a common practice despite the known risks. With climate change effects, it is crucial to understand how these structures will perform under such extreme conditions. In this study, the performance of a large-scale model of a modular block geogrid-reinforced soil wall, using fine-grained backfill material, is evaluated under varying simulated rainfall intensities and drying periods. The model was constructed in a laboratory environment, enabling the implementation of an extensive instrumentation program designed to monitor soil suction, volumetric water content, and the resulting deformation and reinforcement strains. Tensile loads mobilized by the geogrid within the backfill soil and at the connection with block wall facing are discussed in the paper. The study demonstrates the satisfactory performance of a poorly draining reinforced soil wall even after prolonged and intense simulated rainfall. The low hydraulic conductivity of the well-compacted backfill soil, combined with significant surface runoff, helped maintain low levels of soil suction which reflects in apparent cohesion. Drying periods led to varying but significant rates of suction recovery influenced by rainfall-drying patterns. The findings indicate that rainfall intensities of 10 mm/h (240 mm/day) for over 7 days were insufficient to fully eliminate suction in a poorly draining geogrid-reinforced wall.
{"title":"Influence of rainfall and drying periods on the performance of a large-scale segmental GRS wall model built with poorly draining local soil","authors":"M.C. Santos ,&nbsp;Yoo C ,&nbsp;F.H.M. Portelinha","doi":"10.1016/j.geotexmem.2025.02.003","DOIUrl":"10.1016/j.geotexmem.2025.02.003","url":null,"abstract":"<div><div>The use of poorly draining local soils as backfill material in geosynthetic reinforced soil walls has become a common practice despite the known risks. With climate change effects, it is crucial to understand how these structures will perform under such extreme conditions. In this study, the performance of a large-scale model of a modular block geogrid-reinforced soil wall, using fine-grained backfill material, is evaluated under varying simulated rainfall intensities and drying periods. The model was constructed in a laboratory environment, enabling the implementation of an extensive instrumentation program designed to monitor soil suction, volumetric water content, and the resulting deformation and reinforcement strains. Tensile loads mobilized by the geogrid within the backfill soil and at the connection with block wall facing are discussed in the paper. The study demonstrates the satisfactory performance of a poorly draining reinforced soil wall even after prolonged and intense simulated rainfall. The low hydraulic conductivity of the well-compacted backfill soil, combined with significant surface runoff, helped maintain low levels of soil suction which reflects in apparent cohesion. Drying periods led to varying but significant rates of suction recovery influenced by rainfall-drying patterns. The findings indicate that rainfall intensities of 10 mm/h (240 mm/day) for over 7 days were insufficient to fully eliminate suction in a poorly draining geogrid-reinforced wall.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 847-866"},"PeriodicalIF":4.7,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geotextiles and Geomembranes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1