A multiscale electricity theft detection model based on feature engineering

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-23 DOI:10.1016/j.bdr.2024.100457
Wei Zhang, Yu Dai
{"title":"A multiscale electricity theft detection model based on feature engineering","authors":"Wei Zhang,&nbsp;Yu Dai","doi":"10.1016/j.bdr.2024.100457","DOIUrl":null,"url":null,"abstract":"<div><p>With the widespread adoption of smart meters and the growing availability of data mining and machine learning algorithms, there is a pressing demand for methods that are both accurate and explicable in identifying electricity theft patterns among end-users. To address this need, this study proposes a multi-scale anomaly detection model based on feature engineering.Specifically, tsfresh is utilized in feature engineering to extract electricity consumption features from the raw data, and XGBoost is employed to select features that are highly correlated with anomalous behavior, which have clear physical interpretations. Multi-scale convolutional neural networks are then used to analyze and process the data at different temporal and frequency scales. Attention mechanisms are applied to assign weights to different feature channels, and all of the extracted information is fused for anomaly detection. The combination of feature engineering and multi-scale convolutional neural networks not only enhances the interpretability of the model but also improves its performance, as demonstrated by the experimental results, which show that the proposed method outperforms traditional anomaly detection approaches across multiple evaluation metrics.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000339","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread adoption of smart meters and the growing availability of data mining and machine learning algorithms, there is a pressing demand for methods that are both accurate and explicable in identifying electricity theft patterns among end-users. To address this need, this study proposes a multi-scale anomaly detection model based on feature engineering.Specifically, tsfresh is utilized in feature engineering to extract electricity consumption features from the raw data, and XGBoost is employed to select features that are highly correlated with anomalous behavior, which have clear physical interpretations. Multi-scale convolutional neural networks are then used to analyze and process the data at different temporal and frequency scales. Attention mechanisms are applied to assign weights to different feature channels, and all of the extracted information is fused for anomaly detection. The combination of feature engineering and multi-scale convolutional neural networks not only enhances the interpretability of the model but also improves its performance, as demonstrated by the experimental results, which show that the proposed method outperforms traditional anomaly detection approaches across multiple evaluation metrics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征工程的多尺度窃电检测模型
随着智能电表的广泛应用以及数据挖掘和机器学习算法的日益普及,人们迫切需要既准确又可解释的方法来识别终端用户的窃电模式。为满足这一需求,本研究提出了一种基于特征工程的多尺度异常检测模型。具体来说,在特征工程中使用 tsfresh 从原始数据中提取用电特征,并使用 XGBoost 选择与异常行为高度相关的特征,这些特征具有明确的物理解释。然后使用多尺度卷积神经网络来分析和处理不同时间和频率尺度的数据。应用注意机制为不同的特征通道分配权重,并融合所有提取的信息进行异常检测。实验结果表明,特征工程与多尺度卷积神经网络的结合不仅增强了模型的可解释性,还提高了模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1