{"title":"PredictOptiCloud: A hybrid framework for predictive optimization in hybrid workload cloud task scheduling","authors":"Sugan J , Isaac Sajan R","doi":"10.1016/j.simpat.2024.102946","DOIUrl":null,"url":null,"abstract":"<div><p>In the realm of e-commerce, the growing complexity of dynamic workloads and resource management poses a substantial challenge for platforms aiming to optimize user experiences and operational efficiency. To address this issue, the PredictOptiCloud framework is introduced, offering a solution that combines sophisticated methodologies with comprehensive performance analysis. The framework encompasses a domain-specific approach that extracts and processes historical workload data, utilizing Domain-specific Hierarchical Attention Bi LSTM networks. This enables PredictOptiCloud to effectively predict and manage both stable and dynamic workloads. Furthermore, it employs the Spider Wolf Optimization (SWO) for load balancing and offloading decisions, optimizing resource allocation and enhancing user experiences. The performance analysis of PredictOptiCloud involves a multifaceted evaluation, with key metrics including response time, throughput, resource utilization rate, cost-efficiency, conversion rate, rate of successful task offloading, precision, accuracy, task volume, and churn rate. By meticulously assessing these metrics, PredictOptiCloud demonstrates its prowess in not only predicting and managing workloads but also in optimizing user satisfaction, operational efficiency, and cost-effectiveness, ultimately positioning itself as an invaluable asset for e-commerce platforms striving for excellence in an ever-evolving landscape.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"134 ","pages":"Article 102946"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000601","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of e-commerce, the growing complexity of dynamic workloads and resource management poses a substantial challenge for platforms aiming to optimize user experiences and operational efficiency. To address this issue, the PredictOptiCloud framework is introduced, offering a solution that combines sophisticated methodologies with comprehensive performance analysis. The framework encompasses a domain-specific approach that extracts and processes historical workload data, utilizing Domain-specific Hierarchical Attention Bi LSTM networks. This enables PredictOptiCloud to effectively predict and manage both stable and dynamic workloads. Furthermore, it employs the Spider Wolf Optimization (SWO) for load balancing and offloading decisions, optimizing resource allocation and enhancing user experiences. The performance analysis of PredictOptiCloud involves a multifaceted evaluation, with key metrics including response time, throughput, resource utilization rate, cost-efficiency, conversion rate, rate of successful task offloading, precision, accuracy, task volume, and churn rate. By meticulously assessing these metrics, PredictOptiCloud demonstrates its prowess in not only predicting and managing workloads but also in optimizing user satisfaction, operational efficiency, and cost-effectiveness, ultimately positioning itself as an invaluable asset for e-commerce platforms striving for excellence in an ever-evolving landscape.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.