Sofiene Abidi, Philippe Mathieu, Antoine Nongaillard
{"title":"Analyzing communication policies in cooperative multi-agent reinforcement learning for traffic signal control: A simulation-based study","authors":"Sofiene Abidi, Philippe Mathieu, Antoine Nongaillard","doi":"10.1016/j.simpat.2025.103100","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic signal control (TSC) poses a significant challenge in intelligent transportation systems and has been addressed using multi-agent reinforcement learning (MARL). While centralized approaches are often impractical for large-scale TSC problems, decentralized approaches offer scalability but introduce new challenges, such as partial observability. Communication plays a crucial role in decentralized MARL, as agents must exchange information through messages to understand the system better and achieve effective coordination. Deep MARL has been applied, where multiple interacting agents share a common environment. However, many proposed deep MARL communication policies for TSC allow agents to communicate with all other agents and share global state. This can contribute to system noise and degrade overall performance since real-time global information sharing is impractical due to communication latency. This paper employs simulation-based approaches to assess the effectiveness of diverse information-sharing strategies to enhance overall system performance based on Cooperative Deep Q-Network (Co-DQN). Simulation experiment results suggest that the lack of a suitable sharing policy to provide a representative observation of the real state appears to affect performance more drastically than changes to the underlying traffic patterns.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"141 ","pages":"Article 103100"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000358","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic signal control (TSC) poses a significant challenge in intelligent transportation systems and has been addressed using multi-agent reinforcement learning (MARL). While centralized approaches are often impractical for large-scale TSC problems, decentralized approaches offer scalability but introduce new challenges, such as partial observability. Communication plays a crucial role in decentralized MARL, as agents must exchange information through messages to understand the system better and achieve effective coordination. Deep MARL has been applied, where multiple interacting agents share a common environment. However, many proposed deep MARL communication policies for TSC allow agents to communicate with all other agents and share global state. This can contribute to system noise and degrade overall performance since real-time global information sharing is impractical due to communication latency. This paper employs simulation-based approaches to assess the effectiveness of diverse information-sharing strategies to enhance overall system performance based on Cooperative Deep Q-Network (Co-DQN). Simulation experiment results suggest that the lack of a suitable sharing policy to provide a representative observation of the real state appears to affect performance more drastically than changes to the underlying traffic patterns.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.