Analyzing communication policies in cooperative multi-agent reinforcement learning for traffic signal control: A simulation-based study

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Simulation Modelling Practice and Theory Pub Date : 2025-03-07 DOI:10.1016/j.simpat.2025.103100
Sofiene Abidi, Philippe Mathieu, Antoine Nongaillard
{"title":"Analyzing communication policies in cooperative multi-agent reinforcement learning for traffic signal control: A simulation-based study","authors":"Sofiene Abidi,&nbsp;Philippe Mathieu,&nbsp;Antoine Nongaillard","doi":"10.1016/j.simpat.2025.103100","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic signal control (TSC) poses a significant challenge in intelligent transportation systems and has been addressed using multi-agent reinforcement learning (MARL). While centralized approaches are often impractical for large-scale TSC problems, decentralized approaches offer scalability but introduce new challenges, such as partial observability. Communication plays a crucial role in decentralized MARL, as agents must exchange information through messages to understand the system better and achieve effective coordination. Deep MARL has been applied, where multiple interacting agents share a common environment. However, many proposed deep MARL communication policies for TSC allow agents to communicate with all other agents and share global state. This can contribute to system noise and degrade overall performance since real-time global information sharing is impractical due to communication latency. This paper employs simulation-based approaches to assess the effectiveness of diverse information-sharing strategies to enhance overall system performance based on Cooperative Deep Q-Network (Co-DQN). Simulation experiment results suggest that the lack of a suitable sharing policy to provide a representative observation of the real state appears to affect performance more drastically than changes to the underlying traffic patterns.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"141 ","pages":"Article 103100"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000358","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic signal control (TSC) poses a significant challenge in intelligent transportation systems and has been addressed using multi-agent reinforcement learning (MARL). While centralized approaches are often impractical for large-scale TSC problems, decentralized approaches offer scalability but introduce new challenges, such as partial observability. Communication plays a crucial role in decentralized MARL, as agents must exchange information through messages to understand the system better and achieve effective coordination. Deep MARL has been applied, where multiple interacting agents share a common environment. However, many proposed deep MARL communication policies for TSC allow agents to communicate with all other agents and share global state. This can contribute to system noise and degrade overall performance since real-time global information sharing is impractical due to communication latency. This paper employs simulation-based approaches to assess the effectiveness of diverse information-sharing strategies to enhance overall system performance based on Cooperative Deep Q-Network (Co-DQN). Simulation experiment results suggest that the lack of a suitable sharing policy to provide a representative observation of the real state appears to affect performance more drastically than changes to the underlying traffic patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
期刊最新文献
Quantitative analysis of hypervisor efficiency and energy consumption in heterogeneous multi-VM environments with varied server workloads Analyzing communication policies in cooperative multi-agent reinforcement learning for traffic signal control: A simulation-based study A simulation approach with heuristic rules for reliability estimation of two-terminal multi-state networks based on minimal cuts and parallel computations B2RAM: Design and practical implementation of a secured information management framework for dynamic resource allocation using a novel 2-Tier blockchain model Multi-dimensional optimization for collaborative task scheduling in cloud-edge-end system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1