{"title":"A note on the two variable Artin's conjecture","authors":"S.G. Hazra , M. Ram Murty , J. Sivaraman","doi":"10.1016/j.jnt.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>In 1927, Artin conjectured that any integer <em>a</em> which is not −1 or a perfect square is a primitive root for a positive density of primes <em>p</em>. While this conjecture still remains open, there has been a lot of progress in last six decades. In 2000, Moree and Stevenhagen proposed what is known as the two variable Artin's conjecture and proved that for any multiplicatively independent rational numbers <em>a</em> and <em>b</em>, the set<span><span><span><math><mo>{</mo><mi>p</mi><mo>⩽</mo><mi>x</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>p</mi><mtext> prime, </mtext><mphantom><mi>m</mi></mphantom><mi>a</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>∈</mo><mo>〈</mo><mi>b</mi><mo>〉</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>}</mo></math></span></span></span> has positive density under the Generalised Riemann Hypothesis for certain Dedekind zeta functions. While the infinitude of such primes is known, the only unconditional lower bound for the size of the above set is due to Ram Murty, Séguin and Stewart who in 2019 showed that for infinitely many pairs <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span><span><span><span><math><mi>#</mi><mo>{</mo><mi>p</mi><mo>⩽</mo><mi>x</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>p</mi><mtext> prime, </mtext><mphantom><mi>m</mi></mphantom><mi>a</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>∈</mo><mo>〈</mo><mi>b</mi><mo>〉</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>}</mo><mo>≫</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>x</mi></mrow></mfrac><mo>.</mo></math></span></span></span> In this paper we improve this lower bound. In particular we show that given any three multiplicatively independent integers <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span> such that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>−</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>−</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>−</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span></span></span> are not squares, there exists a pair of elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>S</mi></math></span> such that<span><span><span><math><mi>#</mi><mo>{</mo><mi>p</mi><mo>⩽</mo><mi>x</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>p</mi><mtext> prime, </mtext><mphantom><mi>m</mi></mphantom><mi>a</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>∈</mo><mo>〈</mo><mi>b</mi><mo>〉</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>}</mo><mo>≫</mo><mfrac><mrow><mi>x</mi><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>x</mi></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>x</mi></mrow></mfrac><mo>.</mo></math></span></span></span> Further, under the assumption of a level of distribution greater than <span><math><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></math></span> in a theorem of Bombieri, Friedlander and Iwaniec (as modified by Heath-Brown), we prove the following conditional result. Given any two multiplicatively independent integers <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span> such that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mo>−</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span></span></span> are not squares, there exists a pair of elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>−</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span> such that<span><span><span><math><mi>#</mi><mo>{</mo><mi>p</mi><mo>⩽</mo><mi>x</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>p</mi><mtext> prime, </mtext><mphantom><mi>m</mi></mphantom><mi>a</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>∈</mo><mo>〈</mo><mi>b</mi><mo>〉</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>p</mi><mo>}</mo><mo>≫</mo><mfrac><mrow><mi>x</mi><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>x</mi></mrow><mrow><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>x</mi></mrow></mfrac><mo>.</mo></math></span></span></span></p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 161-185"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000829","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 1927, Artin conjectured that any integer a which is not −1 or a perfect square is a primitive root for a positive density of primes p. While this conjecture still remains open, there has been a lot of progress in last six decades. In 2000, Moree and Stevenhagen proposed what is known as the two variable Artin's conjecture and proved that for any multiplicatively independent rational numbers a and b, the set has positive density under the Generalised Riemann Hypothesis for certain Dedekind zeta functions. While the infinitude of such primes is known, the only unconditional lower bound for the size of the above set is due to Ram Murty, Séguin and Stewart who in 2019 showed that for infinitely many pairs In this paper we improve this lower bound. In particular we show that given any three multiplicatively independent integers such that are not squares, there exists a pair of elements such that Further, under the assumption of a level of distribution greater than in a theorem of Bombieri, Friedlander and Iwaniec (as modified by Heath-Brown), we prove the following conditional result. Given any two multiplicatively independent integers such that are not squares, there exists a pair of elements such that
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.