Advancements in synthetic and electrocatalytic exploitation of guest-host intercalated 2D materials

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Natural Science: Materials International Pub Date : 2024-06-01 DOI:10.1016/j.pnsc.2024.04.008
Qian Yang , Kun Wang , Meiling Zhang , Feihong Du , Jiayang Li , Chen Zheng , Jinyang Li
{"title":"Advancements in synthetic and electrocatalytic exploitation of guest-host intercalated 2D materials","authors":"Qian Yang ,&nbsp;Kun Wang ,&nbsp;Meiling Zhang ,&nbsp;Feihong Du ,&nbsp;Jiayang Li ,&nbsp;Chen Zheng ,&nbsp;Jinyang Li","doi":"10.1016/j.pnsc.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence and development of layered materials have shown great promise for many applications, especially in recent years, the effective modulation of the physicochemical properties of layered materials by intercalation chemistry has led to great potential in material design. In this paper, we review the reaction mechanisms of different guest species (metal atoms/ions, organic molecules/ions, inorganic molecules and inorganic ions) intercalated into the host layered materials as well as the recent progress. It is also reviewed that layered intercalated materials with controllable structure and tunable physicochemical properties can be prepared through the occurrence of interactions between different subjects and guests. The specific applications of intercalation chemistry in the field of electrocatalysis, such as the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction and other electrocatalytic reactions, are then discussed, with emphasis on the mechanism of the improved catalytic activity and stability of the layered materials after guest intercalation.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124000935","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence and development of layered materials have shown great promise for many applications, especially in recent years, the effective modulation of the physicochemical properties of layered materials by intercalation chemistry has led to great potential in material design. In this paper, we review the reaction mechanisms of different guest species (metal atoms/ions, organic molecules/ions, inorganic molecules and inorganic ions) intercalated into the host layered materials as well as the recent progress. It is also reviewed that layered intercalated materials with controllable structure and tunable physicochemical properties can be prepared through the occurrence of interactions between different subjects and guests. The specific applications of intercalation chemistry in the field of electrocatalysis, such as the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction and other electrocatalytic reactions, are then discussed, with emphasis on the mechanism of the improved catalytic activity and stability of the layered materials after guest intercalation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客体插层二维材料的合成和电催化利用进展
层状材料的出现和发展为许多应用领域带来了巨大前景,尤其是近年来,通过插层化学有效调控层状材料的物理化学性质,为材料设计带来了巨大潜力。本文综述了不同客体(金属原子/离子、有机分子/离子、无机分子和无机离子)插层到宿主层状材料中的反应机理及最新进展。此外,还综述了通过不同主体和客体之间的相互作用,可以制备出结构可控、物理化学性质可调的层状插层材料。然后讨论了插层化学在电催化领域的具体应用,如氢进化反应、氧进化反应、氧还原反应和其他电催化反应,重点探讨了客体插层后层状材料催化活性和稳定性提高的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
2.10%
发文量
2812
审稿时长
49 days
期刊介绍: Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings. As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.
期刊最新文献
Editorial Board Enhanced air-poisoning resistance in vanadium-based hydrogen storage alloy by addition of Si Advances in CO-tolerant anode catalysts for proton exchange membrane fuel cells Superior triethylamine-sensing properties based on SnO2 hollow nanospheres synthesized via one-step process Enhanced light harvesting ability in hollow Pt/TiO2 nanoreactor for boosting tetracycline photodegradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1