Xin Hu , Hong Yang , Xiaoyue Fang , Xuyan Liu , Jiawei Wang , Xiaotong Wang , Yongsheng Bai , Bojun Su
{"title":"Stable partial nitrification was achieved for nitrogen removal from municipal wastewater by gel immobilization: A pilot-scale study","authors":"Xin Hu , Hong Yang , Xiaoyue Fang , Xuyan Liu , Jiawei Wang , Xiaotong Wang , Yongsheng Bai , Bojun Su","doi":"10.1016/j.jes.2024.04.020","DOIUrl":null,"url":null,"abstract":"<div><p>As an energy and carbon saving process for nitrogen removal from wastewater, the partial nitrification and denitrification process (PN/D) has been extensively researched. However, achieving stable PN in municipal wastewater has always been challenging. In this study, a gel immobilized PN/D nitrogen removal process (GI-PN/D) was established. A 94d pilot-scale experiment was conducted using real municipal wastewater with an ammonia concentration of 43.5 ± 5.3 mg N/L at a temperature range of 11.3–28.7℃. The nitrogen removal performance and associated pathways, shifts in the microbial community as well as sludge yield were investigated. The results were as follows: the effluent TN and COD were 0.6 ± 0.4 mg/L and 31.1 ± 3.8 mg/L respectively, and the NAR exceeding 95 %. GI-PN/D achieved deep nitrogen removal of municipal wastewater through stable PN without taking any other measures. The primary pathways for nitrogen removal were identified as denitrification, simultaneous nitrification-denitrification, and aerobic denitrification. High-throughput sequencing analysis revealed that the immobilized fillers facilitated the autonomous enrichment of functional bacteria in each reactor, effectively promoting the dominance and stability of the microbial communities. In addition, GI-PN/D had the characteristic of low sludge yield, with an average sludge yield of 0.029 kg SS/kg COD. This study provides an effective technical for nitrogen removal from municipal wastewater through PN.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224001992","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As an energy and carbon saving process for nitrogen removal from wastewater, the partial nitrification and denitrification process (PN/D) has been extensively researched. However, achieving stable PN in municipal wastewater has always been challenging. In this study, a gel immobilized PN/D nitrogen removal process (GI-PN/D) was established. A 94d pilot-scale experiment was conducted using real municipal wastewater with an ammonia concentration of 43.5 ± 5.3 mg N/L at a temperature range of 11.3–28.7℃. The nitrogen removal performance and associated pathways, shifts in the microbial community as well as sludge yield were investigated. The results were as follows: the effluent TN and COD were 0.6 ± 0.4 mg/L and 31.1 ± 3.8 mg/L respectively, and the NAR exceeding 95 %. GI-PN/D achieved deep nitrogen removal of municipal wastewater through stable PN without taking any other measures. The primary pathways for nitrogen removal were identified as denitrification, simultaneous nitrification-denitrification, and aerobic denitrification. High-throughput sequencing analysis revealed that the immobilized fillers facilitated the autonomous enrichment of functional bacteria in each reactor, effectively promoting the dominance and stability of the microbial communities. In addition, GI-PN/D had the characteristic of low sludge yield, with an average sludge yield of 0.029 kg SS/kg COD. This study provides an effective technical for nitrogen removal from municipal wastewater through PN.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.