Explanatory models in neuroscience, Part 1: Taking mechanistic abstraction seriously

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Systems Research Pub Date : 2024-04-24 DOI:10.1016/j.cogsys.2024.101244
Rosa Cao , Daniel Yamins
{"title":"Explanatory models in neuroscience, Part 1: Taking mechanistic abstraction seriously","authors":"Rosa Cao ,&nbsp;Daniel Yamins","doi":"10.1016/j.cogsys.2024.101244","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the recent success of neural network models in mimicking animal performance on various tasks, critics worry that these models fail to illuminate brain function. We take it that a central approach to explanation in systems neuroscience is that of mechanistic modeling, where understanding the system requires us to characterize its parts, organization, and activities, and how those give rise to behaviors of interest. However, it remains controversial what it takes for a model to be mechanistic, and whether computational models such as neural networks qualify as explanatory on this approach.</p><p>We argue that certain kinds of neural network models are actually good examples of mechanistic models, when an appropriate notion of mechanistic mapping is deployed. Building on existing work on model-to-mechanism mapping (3M), we describe criteria delineating such a notion, which we call 3M++. These criteria require us, first, to identify an abstract level of description that is still detailed enough to be “runnable”, and then, to construct model-to-brain mappings using the same principles as those employed for brain-to-brain mapping across individuals.</p><p>Perhaps surprisingly, the abstractions required are just those already in use in experimental neuroscience and deployed in the construction of more familiar computational models — just as the principles of inter-brain mappings are very much in the spirit of those already employed in the collection and analysis of data across animals.</p><p>In a companion paper, we address the relationship between optimization and intelligibility, in the context of functional evolutionary explanations. Taken together, mechanistic interpretations of computational models and the dependencies between form and function illuminated by optimization processes can help us to understand why brain systems are built they way they are.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172400038X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the recent success of neural network models in mimicking animal performance on various tasks, critics worry that these models fail to illuminate brain function. We take it that a central approach to explanation in systems neuroscience is that of mechanistic modeling, where understanding the system requires us to characterize its parts, organization, and activities, and how those give rise to behaviors of interest. However, it remains controversial what it takes for a model to be mechanistic, and whether computational models such as neural networks qualify as explanatory on this approach.

We argue that certain kinds of neural network models are actually good examples of mechanistic models, when an appropriate notion of mechanistic mapping is deployed. Building on existing work on model-to-mechanism mapping (3M), we describe criteria delineating such a notion, which we call 3M++. These criteria require us, first, to identify an abstract level of description that is still detailed enough to be “runnable”, and then, to construct model-to-brain mappings using the same principles as those employed for brain-to-brain mapping across individuals.

Perhaps surprisingly, the abstractions required are just those already in use in experimental neuroscience and deployed in the construction of more familiar computational models — just as the principles of inter-brain mappings are very much in the spirit of those already employed in the collection and analysis of data across animals.

In a companion paper, we address the relationship between optimization and intelligibility, in the context of functional evolutionary explanations. Taken together, mechanistic interpretations of computational models and the dependencies between form and function illuminated by optimization processes can help us to understand why brain systems are built they way they are.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经科学中的解释模型,第 1 部分:认真对待机械抽象理论
尽管神经网络模型最近在模仿动物完成各种任务方面取得了成功,但批评者担心这些模型无法阐明大脑功能。我们认为,系统神经科学的一个核心解释方法是机理建模,即理解系统需要我们描述其各个部分、组织和活动的特征,以及这些特征如何导致感兴趣的行为。我们认为,如果采用适当的机理映射概念,某些类型的神经网络模型实际上是机理模型的良好范例。在现有的模型到机理映射(3M)工作的基础上,我们描述了划分这种概念的标准,我们称之为 3M++。这些标准要求我们首先确定一个抽象的描述层次,其详细程度仍足以 "可运行",然后使用与跨个体的脑-脑映射相同的原则构建模型-脑映射。也许令人惊讶的是,所需的抽象概念正是那些在实验神经科学中已经使用过的、在构建更熟悉的计算模型时部署过的抽象概念--就像脑间映射的原则在很大程度上是那些在收集和分析跨动物数据时已经使用过的原则一样。总之,对计算模型的机制解释以及优化过程所揭示的形式与功能之间的依赖关系,可以帮助我们理解大脑系统的构建方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
期刊最新文献
A mathematical formulation of learner cognition for personalised learning experiences Identification of the emotional component of inner pronunciation: EEG-ERP study Towards emotion-aware intelligent agents by utilizing knowledge graphs of experiences Exploring the impact of virtual reality flight simulations on EEG neural patterns and task performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1