Effect of Variable Viscosity on Entropy Generation Analysis Due to Graphene Oxide Nanofluid Convective Flow in Concentric Cylinders

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2024-04-01 DOI:10.1166/jon.2024.2114
Jagadeeshwar Pashikanti, D. R. Susmitha Priyadharshini, A. Chamkha
{"title":"Effect of Variable Viscosity on Entropy Generation Analysis Due to Graphene Oxide Nanofluid Convective Flow in Concentric Cylinders","authors":"Jagadeeshwar Pashikanti, D. R. Susmitha Priyadharshini, A. Chamkha","doi":"10.1166/jon.2024.2114","DOIUrl":null,"url":null,"abstract":"Aggregated studies of graphene nanoparticles is important for the effective utilization of their striking thermophysical properties and extensive industrial applications. This investigation is one such computational study to explore the flow of graphene oxide nanofluids with temperature\n dependant viscosity between two concentric cylinders. Buongiorno model is used to develop the flow of graphene nanofluids including the impacts of Soret and Dufour effects and the effects of nanoparticle characteristics such as thermophoresis and Brownian motion. The modelled equations are\n transformed and are numerically solved using linearization method together with Chebyshev’s spectral collocation method under convective conditions. The impacts of embedded parameters on temperature, concentration and skin friction profiles of the chosen nanofluid and their consequent\n impacts on the predominant cause for the generated entropy are studied. From the tabulated values of Nusselt number and Sherwood number, it is observed that convective heat transfer can be enhanced by thermal Biot number whereas Soret number enhances diffusive mass transfer and variable viscosity\n parameter preferably reduces the skin friction. A comparison table is presented and it shows that the values obtained from the present method are in good agreement with existing literature. Also, the obtained results are depicted and interpreted in detail. Furthermore, entropy generation is\n analysed and its irreversibilty is calculated.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregated studies of graphene nanoparticles is important for the effective utilization of their striking thermophysical properties and extensive industrial applications. This investigation is one such computational study to explore the flow of graphene oxide nanofluids with temperature dependant viscosity between two concentric cylinders. Buongiorno model is used to develop the flow of graphene nanofluids including the impacts of Soret and Dufour effects and the effects of nanoparticle characteristics such as thermophoresis and Brownian motion. The modelled equations are transformed and are numerically solved using linearization method together with Chebyshev’s spectral collocation method under convective conditions. The impacts of embedded parameters on temperature, concentration and skin friction profiles of the chosen nanofluid and their consequent impacts on the predominant cause for the generated entropy are studied. From the tabulated values of Nusselt number and Sherwood number, it is observed that convective heat transfer can be enhanced by thermal Biot number whereas Soret number enhances diffusive mass transfer and variable viscosity parameter preferably reduces the skin friction. A comparison table is presented and it shows that the values obtained from the present method are in good agreement with existing literature. Also, the obtained results are depicted and interpreted in detail. Furthermore, entropy generation is analysed and its irreversibilty is calculated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘度变化对同心圆内氧化石墨烯纳米流体对流熵生成分析的影响
石墨烯纳米颗粒的聚集研究对于有效利用其引人注目的热物理性质和广泛的工业应用非常重要。本研究就是这样一项计算研究,旨在探索具有温度相关粘度的氧化石墨烯纳米流体在两个同心圆柱体之间的流动情况。Buongiorno 模型用于开发石墨烯纳米流体的流动,包括索雷特效应和杜富尔效应的影响,以及热泳和布朗运动等纳米粒子特性的影响。在对流条件下,采用线性化方法和切比雪夫频谱配位法对建模方程进行转换和数值求解。研究了嵌入参数对所选纳米流体的温度、浓度和皮肤摩擦剖面的影响,以及它们对产生熵的主要原因的影响。从努塞尔特数和舍伍德数的表列值可以看出,热比奥特数可以增强对流传热,而索雷特数则可以增强扩散传质,可变粘度参数则可以降低皮肤摩擦。对比表显示,本方法得出的数值与现有文献十分吻合。此外,还对获得的结果进行了详细的描述和解释。此外,还分析了熵的产生并计算了其不可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1