Jagadeeshwar Pashikanti, D. R. Susmitha Priyadharshini, A. Chamkha
{"title":"Effect of Variable Viscosity on Entropy Generation Analysis Due to Graphene Oxide Nanofluid Convective Flow in Concentric Cylinders","authors":"Jagadeeshwar Pashikanti, D. R. Susmitha Priyadharshini, A. Chamkha","doi":"10.1166/jon.2024.2114","DOIUrl":null,"url":null,"abstract":"Aggregated studies of graphene nanoparticles is important for the effective utilization of their striking thermophysical properties and extensive industrial applications. This investigation is one such computational study to explore the flow of graphene oxide nanofluids with temperature\n dependant viscosity between two concentric cylinders. Buongiorno model is used to develop the flow of graphene nanofluids including the impacts of Soret and Dufour effects and the effects of nanoparticle characteristics such as thermophoresis and Brownian motion. The modelled equations are\n transformed and are numerically solved using linearization method together with Chebyshev’s spectral collocation method under convective conditions. The impacts of embedded parameters on temperature, concentration and skin friction profiles of the chosen nanofluid and their consequent\n impacts on the predominant cause for the generated entropy are studied. From the tabulated values of Nusselt number and Sherwood number, it is observed that convective heat transfer can be enhanced by thermal Biot number whereas Soret number enhances diffusive mass transfer and variable viscosity\n parameter preferably reduces the skin friction. A comparison table is presented and it shows that the values obtained from the present method are in good agreement with existing literature. Also, the obtained results are depicted and interpreted in detail. Furthermore, entropy generation is\n analysed and its irreversibilty is calculated.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aggregated studies of graphene nanoparticles is important for the effective utilization of their striking thermophysical properties and extensive industrial applications. This investigation is one such computational study to explore the flow of graphene oxide nanofluids with temperature
dependant viscosity between two concentric cylinders. Buongiorno model is used to develop the flow of graphene nanofluids including the impacts of Soret and Dufour effects and the effects of nanoparticle characteristics such as thermophoresis and Brownian motion. The modelled equations are
transformed and are numerically solved using linearization method together with Chebyshev’s spectral collocation method under convective conditions. The impacts of embedded parameters on temperature, concentration and skin friction profiles of the chosen nanofluid and their consequent
impacts on the predominant cause for the generated entropy are studied. From the tabulated values of Nusselt number and Sherwood number, it is observed that convective heat transfer can be enhanced by thermal Biot number whereas Soret number enhances diffusive mass transfer and variable viscosity
parameter preferably reduces the skin friction. A comparison table is presented and it shows that the values obtained from the present method are in good agreement with existing literature. Also, the obtained results are depicted and interpreted in detail. Furthermore, entropy generation is
analysed and its irreversibilty is calculated.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.