{"title":"Consistent pattern in scaling relationships of leaf dry mass versus area of woody species co-occurring in dry-hot and wet-hot habitats","authors":"Xuenan Li , Zhongfei Li , Shubin Zhang","doi":"10.1016/j.flora.2024.152521","DOIUrl":null,"url":null,"abstract":"<div><p>The scaling relationships between leaf dry mass (LDM) and surface area (LA) can reflect the efficiency of light harvesting and photosynthesis, as well as the ability of plants to withstand biotic and abiotic stress. However, it remains little unknown whether plants alter the scaling relationships of LDM and LA, as along with leaf mass investment per unit area in common species growing in different habitats with high temperature and contrasting water availability. This study involved measuring LA, LDM, and leaf morphological traits (e.g., leaf thickness, dry mass per unit area, and density) in 14 woody species (10 tree species, 2 shrub species, and 2 liana species) that co-occur in wet-hot (WH) and dry-hot (DH) habitats in southwest China. Our results showed that the scaling exponents (α) of LDM vs. LA were consistently greater than 1.0 (indicating the increase in LA fails to keep pace with increasing LDM) for all 14 common species at both sites, irrespective of their growth forms. Furthermore, species exhibited a higher leaf mass investment per unit area and leaf density at the DH site compared to the WH site. These results suggest that the law of “diminishing returns” applies to the scaling relationships of LDM and LA in common species inhabiting both types of habitats. Additionally, plants at the DH site increased leaf mass and density investments, potentially reflecting an essential adaptation to strong selective pressure experienced by plant species in that habitat. This study provides new insights into the scaling relationships of LDM and LA in contrasting habitats, enriching our understanding of the plant life-history strategies and adaptations in response to climate change.</p></div>","PeriodicalId":55156,"journal":{"name":"Flora","volume":"315 ","pages":"Article 152521"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flora","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367253024000744","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The scaling relationships between leaf dry mass (LDM) and surface area (LA) can reflect the efficiency of light harvesting and photosynthesis, as well as the ability of plants to withstand biotic and abiotic stress. However, it remains little unknown whether plants alter the scaling relationships of LDM and LA, as along with leaf mass investment per unit area in common species growing in different habitats with high temperature and contrasting water availability. This study involved measuring LA, LDM, and leaf morphological traits (e.g., leaf thickness, dry mass per unit area, and density) in 14 woody species (10 tree species, 2 shrub species, and 2 liana species) that co-occur in wet-hot (WH) and dry-hot (DH) habitats in southwest China. Our results showed that the scaling exponents (α) of LDM vs. LA were consistently greater than 1.0 (indicating the increase in LA fails to keep pace with increasing LDM) for all 14 common species at both sites, irrespective of their growth forms. Furthermore, species exhibited a higher leaf mass investment per unit area and leaf density at the DH site compared to the WH site. These results suggest that the law of “diminishing returns” applies to the scaling relationships of LDM and LA in common species inhabiting both types of habitats. Additionally, plants at the DH site increased leaf mass and density investments, potentially reflecting an essential adaptation to strong selective pressure experienced by plant species in that habitat. This study provides new insights into the scaling relationships of LDM and LA in contrasting habitats, enriching our understanding of the plant life-history strategies and adaptations in response to climate change.
期刊介绍:
FLORA publishes original contributions and review articles on plant structure (morphology and anatomy), plant distribution (incl. phylogeography) and plant functional ecology (ecophysiology, population ecology and population genetics, organismic interactions, community ecology, ecosystem ecology). Manuscripts (both original and review articles) on a single topic can be compiled in Special Issues, for which suggestions are welcome.
FLORA, the scientific botanical journal with the longest uninterrupted publication sequence (since 1818), considers manuscripts in the above areas which appeal a broad scientific and international readership. Manuscripts focused on floristics and vegetation science will only be considered if they exceed the pure descriptive approach and have relevance for interpreting plant morphology, distribution or ecology. Manuscripts whose content is restricted to purely systematic and nomenclature matters, to geobotanical aspects of only local interest, to pure applications in agri-, horti- or silviculture and pharmacology, and experimental studies dealing exclusively with investigations at the cellular and subcellular level will not be accepted. Manuscripts dealing with comparative and evolutionary aspects of morphology, anatomy and development are welcome.