Modeling realistic synaptic inputs of CA1 hippocampal pyramidal neurons and interneurons via Adaptive Generalized Leaky Integrate-and-Fire models

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2024-04-17 DOI:10.1016/j.mbs.2024.109192
A. Marasco , C. Tribuzi , C.A. Lupascu , M. Migliore
{"title":"Modeling realistic synaptic inputs of CA1 hippocampal pyramidal neurons and interneurons via Adaptive Generalized Leaky Integrate-and-Fire models","authors":"A. Marasco ,&nbsp;C. Tribuzi ,&nbsp;C.A. Lupascu ,&nbsp;M. Migliore","doi":"10.1016/j.mbs.2024.109192","DOIUrl":null,"url":null,"abstract":"<div><p>Computational models of brain regions are crucial for understanding neuronal network dynamics and the emergence of cognitive functions. However, current supercomputing limitations hinder the implementation of large networks with millions of morphological and biophysical accurate neurons. Consequently, research has focused on simplified spiking neuron models, ranging from the computationally fast Leaky Integrate and Fire (LIF) linear models to more sophisticated non-linear implementations like Adaptive Exponential (AdEX) and Izhikevic models, through Generalized Leaky Integrate and Fire (GLIF) approaches. However, in almost all cases, these models are tuned (and can be validated) only under constant current injections and they may not, in general, also reproduce experimental findings under variable currents. This study introduces an Adaptive GLIF (A-GLIF) approach that addresses this limitation by incorporating a new set of update rules. The extended A-GLIF model successfully reproduces both constant and variable current inputs, and it was validated against the results obtained using a biophysical accurate model neuron. This enhancement provides researchers with a tool to optimize spiking neuron models using classic experimental traces under constant current injections, reliably predicting responses to synaptic inputs, which can be confidently used for large-scale network implementations.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400052X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational models of brain regions are crucial for understanding neuronal network dynamics and the emergence of cognitive functions. However, current supercomputing limitations hinder the implementation of large networks with millions of morphological and biophysical accurate neurons. Consequently, research has focused on simplified spiking neuron models, ranging from the computationally fast Leaky Integrate and Fire (LIF) linear models to more sophisticated non-linear implementations like Adaptive Exponential (AdEX) and Izhikevic models, through Generalized Leaky Integrate and Fire (GLIF) approaches. However, in almost all cases, these models are tuned (and can be validated) only under constant current injections and they may not, in general, also reproduce experimental findings under variable currents. This study introduces an Adaptive GLIF (A-GLIF) approach that addresses this limitation by incorporating a new set of update rules. The extended A-GLIF model successfully reproduces both constant and variable current inputs, and it was validated against the results obtained using a biophysical accurate model neuron. This enhancement provides researchers with a tool to optimize spiking neuron models using classic experimental traces under constant current injections, reliably predicting responses to synaptic inputs, which can be confidently used for large-scale network implementations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自适应广义漏电整合与火灾模型,模拟 CA1 海马锥体神经元和中间神经元的现实突触输入。
脑区计算模型对于理解神经元网络动态和认知功能的出现至关重要。然而,目前超级计算的局限性阻碍了拥有数百万形态和生物物理精确神经元的大型网络的实现。因此,研究主要集中在简化的尖峰神经元模型上,从计算速度极快的 "漏积分与点火"(LIF)线性模型到更复杂的非线性实现,如 "自适应指数"(AdEX)和 "Izhikevic "模型,再到 "广义漏积分与点火"(GLIF)方法。然而,几乎在所有情况下,这些模型都只能在恒定电流注入的情况下进行调整(并能得到验证),一般来说,它们可能无法重现可变电流下的实验结果。本研究引入了自适应 GLIF(A-GLIF)方法,通过纳入一套新的更新规则来解决这一局限性。扩展的 A-GLIF 模型成功地再现了恒定和可变的电流输入,并与使用生物物理精确模型神经元获得的结果进行了验证。这一改进为研究人员提供了一种工具,在恒定电流注入的情况下,利用经典的实验轨迹优化尖峰神经元模型,可靠地预测对突触输入的响应,并可放心地用于大规模网络实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer Adolescent vaping behaviours: Exploring the dynamics of a social contagion model Editorial Board Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics A mathematical model of melatonin synthesis and interactions with the circadian clock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1