EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2024-04-01 DOI:10.1093/bioinformatics/btae191
Sijie Li, Yuxi Li, Yu Sun, Yaru Li, Xiaoyang Chen, Songming Tang, Shengquan Chen
{"title":"EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data","authors":"Sijie Li, Yuxi Li, Yu Sun, Yaru Li, Xiaoyang Chen, Songming Tang, Shengquan Chen","doi":"10.1093/bioinformatics/btae191","DOIUrl":null,"url":null,"abstract":"Abstract Summary Recent technical advancements in single-cell chromatin accessibility sequencing (scCAS) have brought new insights to the characterization of epigenetic heterogeneity. As single-cell genomics experiments scale up to hundreds of thousands of cells, the demand for computational resources for downstream analysis grows intractably large and exceeds the capabilities of most researchers. Here, we propose EpiCarousel, a tailored Python package based on lazy loading, parallel processing, and community detection for memory- and time-efficient identification of metacells, i.e. the emergence of homogenous cells, in large-scale scCAS data. Through comprehensive experiments on five datasets of various protocols, sample sizes, dimensions, number of cell types, and degrees of cell-type imbalance, EpiCarousel outperformed baseline methods in systematic evaluation of memory usage, computational time, and multiple downstream analyses including cell type identification. Moreover, EpiCarousel executes preprocessing and downstream cell clustering on the atlas-level dataset with 707 043 cells and 1 154 611 peaks within 2 h consuming <75 GB of RAM and provides superior performance for characterizing cell heterogeneity than state-of-the-art methods. Availability and implementation The EpiCarousel software is well-documented and freely available at https://github.com/biox-nku/epicarousel. It can be seamlessly interoperated with extensive scCAS analysis toolkits.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae191","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Summary Recent technical advancements in single-cell chromatin accessibility sequencing (scCAS) have brought new insights to the characterization of epigenetic heterogeneity. As single-cell genomics experiments scale up to hundreds of thousands of cells, the demand for computational resources for downstream analysis grows intractably large and exceeds the capabilities of most researchers. Here, we propose EpiCarousel, a tailored Python package based on lazy loading, parallel processing, and community detection for memory- and time-efficient identification of metacells, i.e. the emergence of homogenous cells, in large-scale scCAS data. Through comprehensive experiments on five datasets of various protocols, sample sizes, dimensions, number of cell types, and degrees of cell-type imbalance, EpiCarousel outperformed baseline methods in systematic evaluation of memory usage, computational time, and multiple downstream analyses including cell type identification. Moreover, EpiCarousel executes preprocessing and downstream cell clustering on the atlas-level dataset with 707 043 cells and 1 154 611 peaks within 2 h consuming <75 GB of RAM and provides superior performance for characterizing cell heterogeneity than state-of-the-art methods. Availability and implementation The EpiCarousel software is well-documented and freely available at https://github.com/biox-nku/epicarousel. It can be seamlessly interoperated with extensive scCAS analysis toolkits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EpiCarousel:为图集级单细胞染色质可及性数据识别元细胞提供记忆和时间效率
摘要 摘要 单细胞染色质可及性测序(scCAS)技术的最新进展为表观遗传异质性的表征带来了新的见解。随着单细胞基因组学实验规模扩大到数十万个细胞,下游分析对计算资源的需求越来越大,超出了大多数研究人员的能力。在这里,我们提出了 EpiCarousel,这是一个基于懒加载、并行处理和群落检测的定制 Python 软件包,用于在大规模 scCAS 数据中高效地识别元细胞(即同源细胞的出现)。通过对不同协议、样本大小、维度、细胞类型数量和细胞类型失衡程度的五个数据集进行综合实验,EpiCarousel在内存使用、计算时间和包括细胞类型鉴定在内的多种下游分析的系统性评估中均优于基线方法。此外,EpiCarousel 还能在 2 小时内对包含 707043 个细胞和 1 154 611 个峰的图集级数据集执行预处理和下游细胞聚类,内存消耗小于 75 GB,在表征细胞异质性方面的性能优于最先进的方法。可用性和实施 EpiCarousel 软件文档齐全,可在 https://github.com/biox-nku/epicarousel 免费获取。它可以与多种 scCAS 分析工具包无缝互操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads PQSDC: a parallel lossless compressor for quality scores data via sequences partition and Run-Length prediction mapping. MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1