{"title":"Photo‐enhanced uranium recovery from spent fuel reprocessing wastewater via S‐scheme 2D/0D C3N5/Fe2O3 heterojunctions","authors":"Qi Meng, Linzhen Wu, Xiaoyong Yang, Ying Xiong, Fanpeng Kong, Tao Duan","doi":"10.1002/sus2.199","DOIUrl":null,"url":null,"abstract":"Re‐extracting environmentally transportable hexavalent uranium from wastewater produced by spent fuel reprocessing using the photocatalytic technology is a crucial strategy to avoid uranium pollution and recover nuclear fuel strategic resources. Here, we have designed S‐scheme 2D/0D C3N5/Fe2O3 heterojunction photocatalysts based on the built‐in electric field and the energy band bending theory, and have further revealed the immobilization process of hexavalent uranium conversion into relatively insoluble tetravalent uranium in terms of thermodynamics and kinetics. According to the results, the hexavalent uranium removal and recovery ratios in wastewater are as high as 93.38% and 83.58%, respectively. Besides, C3N5/Fe2O3 heterojunctions also exhibit satisfactory catalytic activity and selectivity even in the presence of excessive impurity cations (including Na+, K+, Ca2+, Mg2+, Sr2+, and Eu3+) or various organics (such as xylene, tributylphosphate, pyridine, tannic acid, citric acid, and oxalic acid). It is believed that this work can provide a potential opportunity for S‐scheme heterojunction photocatalysts to re‐enrich uranium from spent fuel wastewater.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"323 ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Re‐extracting environmentally transportable hexavalent uranium from wastewater produced by spent fuel reprocessing using the photocatalytic technology is a crucial strategy to avoid uranium pollution and recover nuclear fuel strategic resources. Here, we have designed S‐scheme 2D/0D C3N5/Fe2O3 heterojunction photocatalysts based on the built‐in electric field and the energy band bending theory, and have further revealed the immobilization process of hexavalent uranium conversion into relatively insoluble tetravalent uranium in terms of thermodynamics and kinetics. According to the results, the hexavalent uranium removal and recovery ratios in wastewater are as high as 93.38% and 83.58%, respectively. Besides, C3N5/Fe2O3 heterojunctions also exhibit satisfactory catalytic activity and selectivity even in the presence of excessive impurity cations (including Na+, K+, Ca2+, Mg2+, Sr2+, and Eu3+) or various organics (such as xylene, tributylphosphate, pyridine, tannic acid, citric acid, and oxalic acid). It is believed that this work can provide a potential opportunity for S‐scheme heterojunction photocatalysts to re‐enrich uranium from spent fuel wastewater.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.