Correlation between electrical conductivity and antibacterial activity of chitosan-stabilized copper and silver nanoparticles

C.Raja Mohan , Ruckmani Kandasamy , J. Kabiriyel
{"title":"Correlation between electrical conductivity and antibacterial activity of chitosan-stabilized copper and silver nanoparticles","authors":"C.Raja Mohan ,&nbsp;Ruckmani Kandasamy ,&nbsp;J. Kabiriyel","doi":"10.1016/j.carpta.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>In this study chemical reduction method is used to synthesize the copper and silver nanoparticles. Chitosan was utilized as a stabilizing agent, a suitable medium for nanoparticle growth, and to stop the oxidation and aggregation of the particles. Various characterization such as FTIR Spectra, UV spectra, PL spectra, XRD, EDAX, TEM and Zeta potential approaches were used to examine the copper and silver nanoparticles. The antibacterial activity was assessed through the disc diffusion method. The antibacterial activity to the selected human pathogens, which included two bacterial pathogens such as <em>S. pyogenes</em> and <em>K. pneumoniae</em> as well as one fungal pathogen, <em>Candida albicans</em> . The size and shape of the synthesized CuNPs and AgNPs were evaluated using TEM. The average size distribution is 23.65 nm for CuNPs and 21.76 nm for AgNPs. Copper and AgNPs show antibacterial efficacy against two bacterial strains and a fungi strain. The AgNPs show significant antibacterial activity in comparison with the Chitosan and CuNPs.</p></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"7 ","pages":"Article 100503"},"PeriodicalIF":6.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666893924000835/pdfft?md5=40452cc0798b3dcf3a5b606f5094d2d2&pid=1-s2.0-S2666893924000835-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study chemical reduction method is used to synthesize the copper and silver nanoparticles. Chitosan was utilized as a stabilizing agent, a suitable medium for nanoparticle growth, and to stop the oxidation and aggregation of the particles. Various characterization such as FTIR Spectra, UV spectra, PL spectra, XRD, EDAX, TEM and Zeta potential approaches were used to examine the copper and silver nanoparticles. The antibacterial activity was assessed through the disc diffusion method. The antibacterial activity to the selected human pathogens, which included two bacterial pathogens such as S. pyogenes and K. pneumoniae as well as one fungal pathogen, Candida albicans . The size and shape of the synthesized CuNPs and AgNPs were evaluated using TEM. The average size distribution is 23.65 nm for CuNPs and 21.76 nm for AgNPs. Copper and AgNPs show antibacterial efficacy against two bacterial strains and a fungi strain. The AgNPs show significant antibacterial activity in comparison with the Chitosan and CuNPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖稳定的铜银纳米粒子的导电性与抗菌活性之间的相关性
本研究采用化学还原法合成了铜和银纳米粒子。壳聚糖被用作稳定剂,是纳米粒子生长的合适介质,并能阻止粒子的氧化和聚集。研究人员使用了傅立叶变换红外光谱、紫外光谱、聚光光谱、XRD、EDAX、TEM 和 Zeta 电位等多种表征方法来检测铜和银纳米粒子。抗菌活性通过盘扩散法进行评估。这些病原体包括两种细菌病原体,如化脓性链球菌和肺炎双球菌,以及一种真菌病原体,即白色念珠菌。用 TEM 评估了合成的 CuNPs 和 AgNPs 的尺寸和形状。CuNPs 和 AgNPs 的平均粒度分布分别为 23.65 nm 和 21.76 nm。铜和 AgNPs 对两种细菌菌株和一种真菌菌株具有抗菌效果。与壳聚糖和铜纳米粒子相比,AgNPs 具有明显的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Influence of consumption of unsaturated alginate oligosaccharides on the gut microbiota and the intestinal mucosal immunity homeostasis in immunocompromised mice Production of cellulose nanocrystals from the waste banana (M. oranta) tree rachis fiber as a reinforcement to fabricate useful bionanocomposite Novel waste wool fabric reinforced alginate-gum hydrogel composites for rapid and selective Pb (II) adsorption Preparation and characterization of crystalline nanocellulose from keya (Pandanus tectorius) L. fiber as potential reinforcement in sustainable bionanocomposite: A waste to wealth scheme Fructo-oligosaccharides and polyfructans derived from Ophiopogon japonicus ameliorate experimental colitis by regulating the gut microbiota
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1