Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular digital health journal Pub Date : 2024-06-01 DOI:10.1016/j.cvdhj.2024.03.007
Liam Butler PhD , Alexander Ivanov MD , Turgay Celik MD , Ibrahim Karabayir PhD , Lokesh Chinthala MS , Melissa M. Hudson MD , Kiri K. Ness PhD , Daniel A. Mulrooney MD, MS , Stephanie B. Dixon MD, MPH , Mohammad S. Tootooni PhD , Adam J. Doerr MD , Byron C. Jaeger PhD , Robert L. Davis MD, MPH , David D. McManus MD, ScM , David Herrington MD, MHS , Oguz Akbilgic DBA, PhD
{"title":"Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs","authors":"Liam Butler PhD ,&nbsp;Alexander Ivanov MD ,&nbsp;Turgay Celik MD ,&nbsp;Ibrahim Karabayir PhD ,&nbsp;Lokesh Chinthala MS ,&nbsp;Melissa M. Hudson MD ,&nbsp;Kiri K. Ness PhD ,&nbsp;Daniel A. Mulrooney MD, MS ,&nbsp;Stephanie B. Dixon MD, MPH ,&nbsp;Mohammad S. Tootooni PhD ,&nbsp;Adam J. Doerr MD ,&nbsp;Byron C. Jaeger PhD ,&nbsp;Robert L. Davis MD, MPH ,&nbsp;David D. McManus MD, ScM ,&nbsp;David Herrington MD, MHS ,&nbsp;Oguz Akbilgic DBA, PhD","doi":"10.1016/j.cvdhj.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Fatal coronary heart disease (FCHD) is often described as sudden cardiac death (affects &gt;4 million people/year), where coronary artery disease is the only identified condition. Electrocardiographic artificial intelligence (ECG-AI) models for FCHD risk prediction using ECG data from wearable devices could enable wider screening/monitoring efforts.</p></div><div><h3>Objectives</h3><p>To develop a single-lead ECG–based deep learning model for FCHD risk prediction and assess concordance between clinical and Apple Watch ECGs.</p></div><div><h3>Methods</h3><p>An FCHD single-lead (“lead I” from 12-lead ECGs) ECG-AI model was developed using 167,662 ECGs (50,132 patients) from the University of Tennessee Health Sciences Center. Eighty percent of the data (5-fold cross-validation) was used for training and 20% as a holdout. Cox proportional hazards (CPH) models incorporating ECG-AI predictions with age, sex, and race were also developed. The models were tested on paired clinical single-lead and Apple Watch ECGs from 243 St. Jude Lifetime Cohort Study participants. The correlation and concordance of the predictions were assessed using Pearson correlation (R), Spearman correlation (ρ), and Cohen’s kappa.</p></div><div><h3>Results</h3><p>The ECG-AI and CPH models resulted in AUC = 0.76 and 0.79, respectively, on the 20% holdout and AUC = 0.85 and 0.87 on the Atrium Health Wake Forest Baptist external validation data. There was moderate-strong positive correlation between predictions (R = 0.74, ρ = 0.67, and κ = 0.58) when tested on the 243 paired ECGs. The clinical (lead I) and Apple Watch predictions led to the same low/high-risk FCHD classification for 99% of the participants. CPH prediction correlation resulted in an R = 0.81, ρ = 0.76, and κ = 0.78.</p></div><div><h3>Conclusion</h3><p>Risk of FCHD can be predicted from single-lead ECGs obtained from wearable devices and are statistically concordant with lead I of a 12-lead ECG.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"5 3","pages":"Pages 115-121"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666693624000306/pdfft?md5=75e33d0289fa6cf13b0db8075297b6a9&pid=1-s2.0-S2666693624000306-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693624000306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Fatal coronary heart disease (FCHD) is often described as sudden cardiac death (affects >4 million people/year), where coronary artery disease is the only identified condition. Electrocardiographic artificial intelligence (ECG-AI) models for FCHD risk prediction using ECG data from wearable devices could enable wider screening/monitoring efforts.

Objectives

To develop a single-lead ECG–based deep learning model for FCHD risk prediction and assess concordance between clinical and Apple Watch ECGs.

Methods

An FCHD single-lead (“lead I” from 12-lead ECGs) ECG-AI model was developed using 167,662 ECGs (50,132 patients) from the University of Tennessee Health Sciences Center. Eighty percent of the data (5-fold cross-validation) was used for training and 20% as a holdout. Cox proportional hazards (CPH) models incorporating ECG-AI predictions with age, sex, and race were also developed. The models were tested on paired clinical single-lead and Apple Watch ECGs from 243 St. Jude Lifetime Cohort Study participants. The correlation and concordance of the predictions were assessed using Pearson correlation (R), Spearman correlation (ρ), and Cohen’s kappa.

Results

The ECG-AI and CPH models resulted in AUC = 0.76 and 0.79, respectively, on the 20% holdout and AUC = 0.85 and 0.87 on the Atrium Health Wake Forest Baptist external validation data. There was moderate-strong positive correlation between predictions (R = 0.74, ρ = 0.67, and κ = 0.58) when tested on the 243 paired ECGs. The clinical (lead I) and Apple Watch predictions led to the same low/high-risk FCHD classification for 99% of the participants. CPH prediction correlation resulted in an R = 0.81, ρ = 0.76, and κ = 0.78.

Conclusion

Risk of FCHD can be predicted from single-lead ECGs obtained from wearable devices and are statistically concordant with lead I of a 12-lead ECG.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 Apple Watch 心电图远程监测致命冠心病的可行性
背景致命性冠心病(FCHD)通常被描述为心脏性猝死(每年影响>400万人),其中冠状动脉疾病是唯一确定的疾病。方法利用田纳西大学健康科学中心的167662份心电图(50132名患者)开发了FCHD单导联(12导联心电图中的 "I导联")心电图人工智能模型。其中 80% 的数据(5 倍交叉验证)用于训练,20% 作为保留数据。此外,还开发了将心电图 AI 预测与年龄、性别和种族相结合的 Cox 比例危险(CPH)模型。这些模型在 243 名圣犹达终生队列研究参与者的配对临床单导联和 Apple Watch 心电图上进行了测试。使用皮尔逊相关性(R)、斯皮尔曼相关性(ρ)和科恩卡帕(Cohen's kappa)对预测的相关性和一致性进行了评估。结果ECG-AI和CPH模型在20%保留率数据上的AUC分别为0.76和0.79,在Atrium Health Wake Forest Baptist外部验证数据上的AUC分别为0.85和0.87。在 243 张配对心电图上进行测试时,预测结果之间存在中等强度的正相关性(R = 0.74、ρ = 0.67 和 κ = 0.58)。在 99% 的参与者中,临床预测(导联 I)和 Apple Watch 预测得出的 FCHD 低/高风险分类结果相同。CPH 预测相关性的 R = 0.81、ρ = 0.76 和 κ = 0.78。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
期刊最新文献
Determinants of global cardiac implantable electrical device remote monitoring utilization – Results from an international survey Cellular-Enabled Remote Patient Monitoring for Pregnancies Complicated by Hypertension Point-of-care testing preferences 2020–2022: Trends over the years Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1