Simulation of Hydrate Migration and Deposition in Pipe with Diameter Reduction and Direction Variation

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM SPE Journal Pub Date : 2024-04-01 DOI:10.2118/219756-pa
Nan Ma, Zhiyuan Wang, Jianbo Zhang, Peng Liu, Yudan Peng
{"title":"Simulation of Hydrate Migration and Deposition in Pipe with Diameter Reduction and Direction Variation","authors":"Nan Ma, Zhiyuan Wang, Jianbo Zhang, Peng Liu, Yudan Peng","doi":"10.2118/219756-pa","DOIUrl":null,"url":null,"abstract":"\n Pipes with diameter reduction and direction variation are very common in deepwater extraction. While the high-pressure and low-temperature conditions may trigger severe hydrate problems, current studies on hydrate particle migration and deposition are mainly carried out in pipes with a constant diameter, whereas the law of diameter reduction has been less explored; in particular, the effect of diameter reduction + direction variation in pipe has not been reported. In this study, a model of hydrate particle migration and deposition in special pipelines is established based on the computational fluid dynamics (CFD)-discrete element solver (DEM)-application programming interface (API) method, which can be used to carry out real-time visualization calculations of hydrate particles. Simultaneously, this paper reveals the mechanism of hydrate particle migration and deposition at the diameter reduction and direction variation, which provides a new idea for the design of the pipe. Furthermore, for the pipe with diameter reduction + direction variation, the entire process of deposition blockage is simulated, and dangerous locations of pipe clogging are identified. The simulation results found that there is a maximum hydrate deposition particle diameter (MHDPD) for hydrate deposition in the pipe. The results of this work may provide valuable references for accurate prediction of particle deposition in deepwater development.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/219756-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

Pipes with diameter reduction and direction variation are very common in deepwater extraction. While the high-pressure and low-temperature conditions may trigger severe hydrate problems, current studies on hydrate particle migration and deposition are mainly carried out in pipes with a constant diameter, whereas the law of diameter reduction has been less explored; in particular, the effect of diameter reduction + direction variation in pipe has not been reported. In this study, a model of hydrate particle migration and deposition in special pipelines is established based on the computational fluid dynamics (CFD)-discrete element solver (DEM)-application programming interface (API) method, which can be used to carry out real-time visualization calculations of hydrate particles. Simultaneously, this paper reveals the mechanism of hydrate particle migration and deposition at the diameter reduction and direction variation, which provides a new idea for the design of the pipe. Furthermore, for the pipe with diameter reduction + direction variation, the entire process of deposition blockage is simulated, and dangerous locations of pipe clogging are identified. The simulation results found that there is a maximum hydrate deposition particle diameter (MHDPD) for hydrate deposition in the pipe. The results of this work may provide valuable references for accurate prediction of particle deposition in deepwater development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟管道中水合物的迁移和沉积与直径减小和方向变化
直径减小和方向变化的管道在深水开采中非常常见。虽然高压和低温条件可能引发严重的水合物问题,但目前对水合物颗粒迁移和沉积的研究主要是在直径恒定的管道中进行的,而对直径减小的规律探讨较少,特别是管道直径减小 + 方向变化的影响尚未见报道。本研究基于计算流体动力学(CFD)- 离散元素求解器(DEM)- 应用程序接口(API)方法,建立了特殊管道中水合物颗粒迁移和沉积模型,可用于对水合物颗粒进行实时可视化计算。同时,本文揭示了水合物颗粒在直径减小和方向变化时的迁移和沉积机理,为管道设计提供了新思路。此外,针对直径减小 + 方向变化的管道,模拟了沉积堵塞的全过程,并确定了管道堵塞的危险位置。模拟结果发现,管道中的水合物沉积存在一个最大水合物沉积颗粒直径(MHDPD)。这项工作的结果可为准确预测深水开发中的颗粒沉积提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
期刊最新文献
Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation Spatiotemporal X-Ray Imaging of Neat and Viscosified CO2 in Displacement of Brine-Saturated Porous Media Novel Resin-Coated Sand Placement Design Guidelines for Controlling Proppant Flowback Post-Slickwater Hydraulic Fracturing Treatments Study on Plugging the Multiscale Water Channeling in Low-Permeability Heterogeneous Porous Media Based on the Growth of Bacteria Integrated Optimization of Hybrid Steam-Solvent Injection in Post-CHOPS Reservoirs with Consideration of Wormhole Networks and Foamy Oil Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1