{"title":"Relationship between Alzheimer dementia and QT interval: A meta-analysis","authors":"Simon W. Rabkin","doi":"10.1002/agm2.12291","DOIUrl":null,"url":null,"abstract":"<p>While the link between aging and mortality from dementia is widely appreciated, the mechanism is not clear. The objective of this study was to determine whether there is a direct relationship between Alzheimer dementia (AD) and the QT interval, because the latter has been related to cardiac mortality. A systematic review and meta-analysis were conducted after a Medline and EMBASE search using terms “Alzheimer disease or Dementia AND QT interval, QT dispersion or cardiac repolarization.” Four studies with control groups were identified. There were significant differences in QT interval between individuals with AD vs individuals without dementia (controls) (odds ratio (OR)1.665 [random effects model] and 1.879 [fixed effect model]) (<i>p</i> < 0.001). There were significant differences in QT interval between individuals with AD vs individuals with mild cognitive impairment (MCI) (OR 1.760 [random effects] and 1.810 [fixed effect]) (<i>p</i> < 0.001). A significant (<i>p</i> <0.001) correlation exists between the QTc and the Mini-Mental State Exam (MMSE), a test of cognitive function. Two studies examined QT variability (the difference between the longest and shortest QT interval on a 12 lead ECG); the OR for QT variability AD vs MCI was 3.858 [random effects model] and 3.712 [fixed effects model] (<i>p</i> < 0.001). When compared to the control group, the OR for QT dispersion in AD was 6.358 [random effects model] or 5.143 ( <i>P</i>< 0.001) [fixed effects model]. A qualitative analysis of the data raised questions about paucity of data defining the nature of the control groups, the pathophysiologic mechanism, and the uniform use of a poor QT heart rate correction factor. The longer QT in AD, greater QT variability in AD, and the direct relationship between QT interval and AD severity supports a brain–heart connection in AD that might be fundamental to aging-induced AD and mortality. Issues with defining the control group, limited number of studies, conflicting data in population studies, and the lack of a strong electrophysiological basis underscore the need for additional research in this field.</p>","PeriodicalId":32862,"journal":{"name":"Aging Medicine","volume":"7 2","pages":"214-223"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agm2.12291","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agm2.12291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While the link between aging and mortality from dementia is widely appreciated, the mechanism is not clear. The objective of this study was to determine whether there is a direct relationship between Alzheimer dementia (AD) and the QT interval, because the latter has been related to cardiac mortality. A systematic review and meta-analysis were conducted after a Medline and EMBASE search using terms “Alzheimer disease or Dementia AND QT interval, QT dispersion or cardiac repolarization.” Four studies with control groups were identified. There were significant differences in QT interval between individuals with AD vs individuals without dementia (controls) (odds ratio (OR)1.665 [random effects model] and 1.879 [fixed effect model]) (p < 0.001). There were significant differences in QT interval between individuals with AD vs individuals with mild cognitive impairment (MCI) (OR 1.760 [random effects] and 1.810 [fixed effect]) (p < 0.001). A significant (p <0.001) correlation exists between the QTc and the Mini-Mental State Exam (MMSE), a test of cognitive function. Two studies examined QT variability (the difference between the longest and shortest QT interval on a 12 lead ECG); the OR for QT variability AD vs MCI was 3.858 [random effects model] and 3.712 [fixed effects model] (p < 0.001). When compared to the control group, the OR for QT dispersion in AD was 6.358 [random effects model] or 5.143 ( P< 0.001) [fixed effects model]. A qualitative analysis of the data raised questions about paucity of data defining the nature of the control groups, the pathophysiologic mechanism, and the uniform use of a poor QT heart rate correction factor. The longer QT in AD, greater QT variability in AD, and the direct relationship between QT interval and AD severity supports a brain–heart connection in AD that might be fundamental to aging-induced AD and mortality. Issues with defining the control group, limited number of studies, conflicting data in population studies, and the lack of a strong electrophysiological basis underscore the need for additional research in this field.