The Performance Investigation of PLLA/PPAPH: The Influence of PPAPH as Heterogeneous Crystal Nuclei

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiale Plastice Pub Date : 2024-04-01 DOI:10.37358/mp.24.1.5711
Lisha Zhao, Yang Lv, Jiale Chen, Hao Huang, Xiaoqin Zhou, Yanhua Cai
{"title":"The Performance Investigation of PLLA/PPAPH: The Influence of PPAPH as Heterogeneous Crystal Nuclei","authors":"Lisha Zhao, Yang Lv, Jiale Chen, Hao Huang, Xiaoqin Zhou, Yanhua Cai","doi":"10.37358/mp.24.1.5711","DOIUrl":null,"url":null,"abstract":"\nTo overcome PLLA�s poor crystallization capability, using nucleating agent as crystallization improvement strategy was performed in this study. PPAPH as PLLA�s an organic nucleating agent was firstly synthesized, and then PLLA was blended with different PPAPH loading through melting blend method, the resulting influences of PPAPH on PLLA�s performances were investigated using the relevant testing instruments. Melt-crystallization revealed that PPAPH played important role in promoting PLLA�s crystallization through providing effective sites of heterogeneous nucleation, and effect of PPAPH loading on PLLA�s melt-crystallization was very poor, indicating that low PPAPH loading could cause PLLA to possess powerful crystallization capacity. In addition, the relative low final melting temperature was beneficial for PLLA/PPAPH�s crystallization. However, an increase of cooling rate during cooling stage weakened PLLA/PPAPH�s crystallization capacity. PLLA/PPAPH�s cold-crystallization suggested that PPAPH had an inhibition effect on cold-crystallization process to some extent. Melting behaviors depended on heating rate and previous crystallization including melt-crystallization at various cooling rates and isothermal crystallization at various crystallization temperatures. PPAPH enhanced PLLA�s fluidity, tensile modulus and tensile strength. Unfortunately, PLLA�s transmittance was seriously weakened as PPAPH loading increased, as well as the elongation at break continuously decreased.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.24.1.5711","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome PLLA�s poor crystallization capability, using nucleating agent as crystallization improvement strategy was performed in this study. PPAPH as PLLA�s an organic nucleating agent was firstly synthesized, and then PLLA was blended with different PPAPH loading through melting blend method, the resulting influences of PPAPH on PLLA�s performances were investigated using the relevant testing instruments. Melt-crystallization revealed that PPAPH played important role in promoting PLLA�s crystallization through providing effective sites of heterogeneous nucleation, and effect of PPAPH loading on PLLA�s melt-crystallization was very poor, indicating that low PPAPH loading could cause PLLA to possess powerful crystallization capacity. In addition, the relative low final melting temperature was beneficial for PLLA/PPAPH�s crystallization. However, an increase of cooling rate during cooling stage weakened PLLA/PPAPH�s crystallization capacity. PLLA/PPAPH�s cold-crystallization suggested that PPAPH had an inhibition effect on cold-crystallization process to some extent. Melting behaviors depended on heating rate and previous crystallization including melt-crystallization at various cooling rates and isothermal crystallization at various crystallization temperatures. PPAPH enhanced PLLA�s fluidity, tensile modulus and tensile strength. Unfortunately, PLLA�s transmittance was seriously weakened as PPAPH loading increased, as well as the elongation at break continuously decreased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乳酸/聚丙烯酰亚胺的性能研究:作为异质晶核的聚丙烯酰亚胺的影响
为了克服聚乳酸结晶能力差的问题,本研究采用了成核剂作为结晶改善策略。首先合成了PPAPH作为PLLA的有机成核剂,然后通过熔融共混的方法将不同PPAPH添加量的PLLA共混,并利用相关测试仪器研究了PPAPH对PLLA性能的影响。熔融结晶结果表明,PPAPH通过提供有效的异质成核位点对PLLA的结晶起到了重要的促进作用,而PPAPH添加量对PLLA熔融结晶的影响非常小,这表明较低的PPAPH添加量可使PLLA具有较强的结晶能力。此外,相对较低的最终熔化温度也有利于PLLA/PPAPH的结晶。然而,在冷却阶段提高冷却速率会削弱PLLA/PPAPH的结晶能力。PLLA/PPAPH的冷结晶表明,PPAPH在一定程度上抑制了冷结晶过程。熔融行为取决于加热速率和之前的结晶情况,包括不同冷却速率下的熔融结晶和不同结晶温度下的等温结晶。PPAPH增强了PLLA的流动性、拉伸模量和拉伸强度。遗憾的是,随着 PPAPH 负荷的增加,PLLA 的透光率严重减弱,断裂伸长率持续下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materiale Plastice
Materiale Plastice MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
25.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest. The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.
期刊最新文献
Experimental Analysis of Hyperelastic Materials Using the Vibration Method Impact of Aligned Carbon Nanotubes on the Mechanical Properties and Sensing Performance of EVA/CNTs Composites Influence of Biphasic Calcium Phosphate Incorporation Into Alginate Matrices In vitro Comparison of the Efficiency of Celluloid and Metallic Matrices in Proximal Restorations with a Bulk Polymer-based Biomaterial The Influence of the Delamination Location on the Bending Behavior of E-Glass Fiber EWR Flat Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1