Yijie Wang, Yunpeng Xie, Ting Li, Yang Wang, Jie Jiang, Xuhui Zhang, Bihua Xia, Shibo Wang, Jing Huang, Weifu Dong
{"title":"Pickering emulsions with high ionic strength resistance stabilized by pea protein isolate-polyglycerol conjugate particles with good biocompatibility","authors":"Yijie Wang, Yunpeng Xie, Ting Li, Yang Wang, Jie Jiang, Xuhui Zhang, Bihua Xia, Shibo Wang, Jing Huang, Weifu Dong","doi":"10.1016/j.ijbiomac.2024.131797","DOIUrl":null,"url":null,"abstract":"<div><p>Among various biopolymers, protein particles are widely used for stabilizing Pickering emulsions, yet their emulsifying ability are easily influenced by the ion concentration, pH, and high temperatures. To address these challenges, this study utilized chemical modification to prepare pea protein isolate-polyglycerol (PPI-PG) conjugates by Schiff-base reaction. Compared with other chemical modifications, this method produces conjugate particles with excellent biocompatibility, capable of promoting cell proliferation by up to 177 %. These conjugates showed improved dispersibility, with diffusion coefficients 3.5 times greater than pure PPI, and the isoelectric points shift from pH 4.6 to pH 1.5, which contribute to the pH stability of emulsions (pH 3–9). Additionally, the anisotropic nature of the conjugate particles, with a three-phase contact angle close to 90°, make particles need more energy for detachment from the oil-water interface, leading to good thermal stability of emulsion (80 °C, 48 h). Notably, after conjugation, these particles rely more on PG chains for dispersibility, which are less affected by ions, resulting in emulsions with high ionic strength resistance (3000 mM). Furthermore, the prepared Pickering emulsion demonstrates remarkable antioxidative properties (only a 10 % decrease), indicating widely potential applications in food, cosmetics, and pharmaceutical sectors.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"269 ","pages":"Article 131797"},"PeriodicalIF":7.7000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024026023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Among various biopolymers, protein particles are widely used for stabilizing Pickering emulsions, yet their emulsifying ability are easily influenced by the ion concentration, pH, and high temperatures. To address these challenges, this study utilized chemical modification to prepare pea protein isolate-polyglycerol (PPI-PG) conjugates by Schiff-base reaction. Compared with other chemical modifications, this method produces conjugate particles with excellent biocompatibility, capable of promoting cell proliferation by up to 177 %. These conjugates showed improved dispersibility, with diffusion coefficients 3.5 times greater than pure PPI, and the isoelectric points shift from pH 4.6 to pH 1.5, which contribute to the pH stability of emulsions (pH 3–9). Additionally, the anisotropic nature of the conjugate particles, with a three-phase contact angle close to 90°, make particles need more energy for detachment from the oil-water interface, leading to good thermal stability of emulsion (80 °C, 48 h). Notably, after conjugation, these particles rely more on PG chains for dispersibility, which are less affected by ions, resulting in emulsions with high ionic strength resistance (3000 mM). Furthermore, the prepared Pickering emulsion demonstrates remarkable antioxidative properties (only a 10 % decrease), indicating widely potential applications in food, cosmetics, and pharmaceutical sectors.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.