Climate mitigation technology for holistic resource management in sub-Saharan Africa: Impact on greenhouse gas emissions

IF 5.8 Q2 ENERGY & FUELS Energy and climate change Pub Date : 2024-04-24 DOI:10.1016/j.egycc.2024.100135
Ivette Gnitedem Keubeng , Vatis Christian Kemezang
{"title":"Climate mitigation technology for holistic resource management in sub-Saharan Africa: Impact on greenhouse gas emissions","authors":"Ivette Gnitedem Keubeng ,&nbsp;Vatis Christian Kemezang","doi":"10.1016/j.egycc.2024.100135","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of climate change mitigation technologies, specifically agricultural land management and renewable energy consumption and production, on greenhouse gas emissions (GHG) in sub-Saharan Africa (SSA) over the period of 1991 to 2015. Our analysis was conducted using an ARDL panel data model with data from 26 countries representing four sub-regions. The results demonstrated that an increase in renewable energy consumption is significantly associated with a decrease in GHG emissions, with a long-term coefficient of -0.422 and a short-term coefficient of -0.757. Additionally, natural resource rents, agricultural land use and population density have a positive impact on greenhouse gas emissions, with coefficients of 0.0605, 0.392 and 0.690, respectively. However, renewable energy production does not have a significant effect on greenhouse gas emissions. This suggests that promoting renewable energy consumption can be an effective way to combat greenhouse gas emissions in the region, and policymakers should implement policies and programs that encourage and facilitate the adoption of renewable energy whilst taking into consideration the impact of agricultural land use. Overall, this study emphasizes the importance of promoting renewable energy consumption and managing agricultural land use as a viable approach to combating greenhouse gas emissions in sub-Saharan Africa, and highlights the potential of climate mitigation technology as a tool for regulators to optimize policy development and counter climate change.</p></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"5 ","pages":"Article 100135"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278724000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of climate change mitigation technologies, specifically agricultural land management and renewable energy consumption and production, on greenhouse gas emissions (GHG) in sub-Saharan Africa (SSA) over the period of 1991 to 2015. Our analysis was conducted using an ARDL panel data model with data from 26 countries representing four sub-regions. The results demonstrated that an increase in renewable energy consumption is significantly associated with a decrease in GHG emissions, with a long-term coefficient of -0.422 and a short-term coefficient of -0.757. Additionally, natural resource rents, agricultural land use and population density have a positive impact on greenhouse gas emissions, with coefficients of 0.0605, 0.392 and 0.690, respectively. However, renewable energy production does not have a significant effect on greenhouse gas emissions. This suggests that promoting renewable energy consumption can be an effective way to combat greenhouse gas emissions in the region, and policymakers should implement policies and programs that encourage and facilitate the adoption of renewable energy whilst taking into consideration the impact of agricultural land use. Overall, this study emphasizes the importance of promoting renewable energy consumption and managing agricultural land use as a viable approach to combating greenhouse gas emissions in sub-Saharan Africa, and highlights the potential of climate mitigation technology as a tool for regulators to optimize policy development and counter climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
撒哈拉以南非洲整体资源管理的气候减缓技术:对温室气体排放的影响
本研究调查了 1991 年至 2015 年期间气候变化减缓技术(特别是农业用地管理和可再生能源消费与生产)对撒哈拉以南非洲(SSA)温室气体排放(GHG)的影响。我们使用 ARDL 面板数据模型进行了分析,数据来自代表四个次区域的 26 个国家。结果表明,可再生能源消费量的增加与温室气体排放量的减少显著相关,长期系数为-0.422,短期系数为-0.757。此外,自然资源租金、农业用地使用和人口密度对温室气体排放也有积极影响,系数分别为 0.0605、0.392 和 0.690。然而,可再生能源生产对温室气体排放的影响并不显著。这表明,促进可再生能源消费是该地区应对温室气体排放的有效途径,政策制定者应实施鼓励和促进采用可再生能源的政策和计划,同时考虑到农业用地的影响。总之,本研究强调了促进可再生能源消费和管理农业用地作为撒哈拉以南非洲地区应对温室气体排放的可行方法的重要性,并突出了气候减缓技术作为监管机构优化政策制定和应对气候变化的工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and climate change
Energy and climate change Global and Planetary Change, Renewable Energy, Sustainability and the Environment, Management, Monitoring, Policy and Law
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Perceptions of decarbonisation challenges for the process industry in Sweden and Norway Green certificates for optimizing low-carbon hydrogen supply chain Cobalt-based molecular electrocatalyst-mediated green hydrogen generation: A potential pathway for decarbonising steel industry Advancing equitable value chains for the global hydrogen economy Health and air pollutant emission impacts of net zero CO2 by 2050 scenarios from the energy modeling forum 37 study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1