Alex Broughton, Y. Utsumi, A. A. Plazas Malagón, Chris Waters, Craig Lage, Adam Snyder, Andrew Rasmussen, Stuart Marshall, Jim Chiang, Simona Murgia, A. Roodman
{"title":"Mitigation of the Brighter-fatter Effect in the LSST Camera","authors":"Alex Broughton, Y. Utsumi, A. A. Plazas Malagón, Chris Waters, Craig Lage, Adam Snyder, Andrew Rasmussen, Stuart Marshall, Jim Chiang, Simona Murgia, A. Roodman","doi":"10.1088/1538-3873/ad3aa2","DOIUrl":null,"url":null,"abstract":"\n Thick, fully depleted charge-coupled devices are known to exhibit nonlinear behavior at high signal levels due to the dynamic behavior of charges collecting in the potential wells of pixels, called the brighter-fatter effect (BFE). The effect results in distorted images of bright calibration stars, creating a flux-dependent point-spread function that if left unmitigated, could make up a large fraction of the error budget in Stage IV weak-lensing (WL) surveys such as the Legacy Survey of Space and Time (LSST). In this paper, we analyze image measurements of flat fields and artificial stars taken at different illumination levels with the LSST Camera (LSSTCam) at SLAC National Accelerator Laboratory in order to quantify this effect in the LSSTCam before and after a previously introduced correction technique. We observe that the BFE evolves anisotropically as a function of flux due to higher-order BFEs, which violates the fundamental assumption of this correction method. We then introduce a new method based on a physically motivated model to account for these higher-order terms in the correction, and then we test the modified correction on both data sets. We find that the new method corrects the effect in flat fields better than it corrects the effect in artificial stars, which we suggest is the result of sub-pixel physics not included in this correction model. We use these results to define a new metric for the full-well capacity of our sensors and advise image processing strategies to further limit the impact of the effect on LSST WL science pathways.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"106 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad3aa2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Thick, fully depleted charge-coupled devices are known to exhibit nonlinear behavior at high signal levels due to the dynamic behavior of charges collecting in the potential wells of pixels, called the brighter-fatter effect (BFE). The effect results in distorted images of bright calibration stars, creating a flux-dependent point-spread function that if left unmitigated, could make up a large fraction of the error budget in Stage IV weak-lensing (WL) surveys such as the Legacy Survey of Space and Time (LSST). In this paper, we analyze image measurements of flat fields and artificial stars taken at different illumination levels with the LSST Camera (LSSTCam) at SLAC National Accelerator Laboratory in order to quantify this effect in the LSSTCam before and after a previously introduced correction technique. We observe that the BFE evolves anisotropically as a function of flux due to higher-order BFEs, which violates the fundamental assumption of this correction method. We then introduce a new method based on a physically motivated model to account for these higher-order terms in the correction, and then we test the modified correction on both data sets. We find that the new method corrects the effect in flat fields better than it corrects the effect in artificial stars, which we suggest is the result of sub-pixel physics not included in this correction model. We use these results to define a new metric for the full-well capacity of our sensors and advise image processing strategies to further limit the impact of the effect on LSST WL science pathways.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico