Iron oxide nanoparticle synthesis: Simulation-based comparison of laboratory- and pilot plant-scale spray-flame synthesis

Sebastian Klukas , Marcus Giglmaier , Martin Underberg , Sophie M. Schnurre , Markus M. Prenting , Torsten Endres , Hartmut Wiggers , Christof Schulz , Moritz Sieber , Sebastian Schimek , Christian O. Paschereit , Nikolaus A. Adams
{"title":"Iron oxide nanoparticle synthesis: Simulation-based comparison of laboratory- and pilot plant-scale spray-flame synthesis","authors":"Sebastian Klukas ,&nbsp;Marcus Giglmaier ,&nbsp;Martin Underberg ,&nbsp;Sophie M. Schnurre ,&nbsp;Markus M. Prenting ,&nbsp;Torsten Endres ,&nbsp;Hartmut Wiggers ,&nbsp;Christof Schulz ,&nbsp;Moritz Sieber ,&nbsp;Sebastian Schimek ,&nbsp;Christian O. Paschereit ,&nbsp;Nikolaus A. Adams","doi":"10.1016/j.jaecs.2024.100263","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzes burner scale-dependent effects for iron-oxide nanoparticles synthesis in spray flames through a combined experimental and numerical approach. A laboratory- and a pilot plant-scale synthesis facility generate iron oxide nanoparticles from iron nitrate dissolved in ethanol/2-ethylhexanoic acid solvents on the 0.5 and 15 g/h scale, respectively. Phase Doppler measurements supply initial conditions for spray development in the numerical approach, while <em>in situ</em> OH* chemiluminescence and multi-line nitric oxide laser-induced fluorescence (NO-LIF) thermometry provide experimental data for comparison with simulation results of the pilot plant burner. <em>Ex situ</em> particle sizing by gas adsorption according to Brunauer-Emmet-Teller (BET) and transmission electron microscopy (TEM), along with phase composition determination via X-ray diffraction (XRD), are used to compare products of both burners and the corresponding simulations. The numerical approach employs a Reynolds-averaged Eulerian–Lagrangian description of the flow in combination with a flamelet/progress variable (FPV) combustion and monodisperse particle model to reflect spray-flame synthesis. Despite similar chemiluminescence between experiment and simulation, more significant discrepancies are observed in NO-LIF thermometry and particle sizing. Nanoparticle formation and growth at both burner scales is investigated using the numerical method. Special attention is directed to the high-temperature particle residence time (HTPRT). Notably, the average temperature–time profiles particles experience are almost identical in the burners, although their geometric scales and designs differ substantially. Simulation results show that while the primary particle diameter remains mostly consistent, the pilot-scale burner produces larger particle agglomerates than the laboratory burner. The difference is attributed to an increased particle number concentration during the initial formation of soft agglomerates. The findings demonstrate that, despite retaining a similar HTPRT, the overall flow conditions and liquid spray dispersion, which impact the distribution of the particle number concentration, influence the final agglomerate size.</p></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"18 ","pages":"Article 100263"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666352X24000189/pdfft?md5=d0ee566b7899e4063d0e19910649271e&pid=1-s2.0-S2666352X24000189-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X24000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes burner scale-dependent effects for iron-oxide nanoparticles synthesis in spray flames through a combined experimental and numerical approach. A laboratory- and a pilot plant-scale synthesis facility generate iron oxide nanoparticles from iron nitrate dissolved in ethanol/2-ethylhexanoic acid solvents on the 0.5 and 15 g/h scale, respectively. Phase Doppler measurements supply initial conditions for spray development in the numerical approach, while in situ OH* chemiluminescence and multi-line nitric oxide laser-induced fluorescence (NO-LIF) thermometry provide experimental data for comparison with simulation results of the pilot plant burner. Ex situ particle sizing by gas adsorption according to Brunauer-Emmet-Teller (BET) and transmission electron microscopy (TEM), along with phase composition determination via X-ray diffraction (XRD), are used to compare products of both burners and the corresponding simulations. The numerical approach employs a Reynolds-averaged Eulerian–Lagrangian description of the flow in combination with a flamelet/progress variable (FPV) combustion and monodisperse particle model to reflect spray-flame synthesis. Despite similar chemiluminescence between experiment and simulation, more significant discrepancies are observed in NO-LIF thermometry and particle sizing. Nanoparticle formation and growth at both burner scales is investigated using the numerical method. Special attention is directed to the high-temperature particle residence time (HTPRT). Notably, the average temperature–time profiles particles experience are almost identical in the burners, although their geometric scales and designs differ substantially. Simulation results show that while the primary particle diameter remains mostly consistent, the pilot-scale burner produces larger particle agglomerates than the laboratory burner. The difference is attributed to an increased particle number concentration during the initial formation of soft agglomerates. The findings demonstrate that, despite retaining a similar HTPRT, the overall flow conditions and liquid spray dispersion, which impact the distribution of the particle number concentration, influence the final agglomerate size.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化铁纳米粒子的合成:基于模拟的实验室规模和中试工厂规模喷雾火焰合成比较
本研究通过实验和数值相结合的方法,分析了在喷射火焰中合成氧化铁纳米粒子时燃烧器的规模效应。实验室和中试工厂规模的合成设备分别以 0.5 和 15 g/h 的速度从溶解在乙醇/2-乙基己酸溶剂中的硝酸铁生成氧化铁纳米颗粒。相位多普勒测量为数值方法中的喷雾发展提供了初始条件,而原位 OH* 化学发光和多线一氧化氮激光诱导荧光(NO-LIF)测温提供了实验数据,可与中试工厂燃烧器的模拟结果进行比较。根据布鲁瑙尔-艾美特-泰勒(BET)和透射电子显微镜(TEM)通过气体吸附进行的原位颗粒测定,以及通过 X 射线衍射(XRD)进行的相组成测定,用于比较两种燃烧器的产物和相应的模拟结果。数值方法采用了雷诺平均欧拉-拉格朗日流动描述,并结合了喷焰/进程变量(FPV)燃烧和单分散颗粒模型,以反映喷焰合成。尽管实验和模拟的化学发光相似,但在 NO-LIF 温度测量和颗粒大小方面观察到了更显著的差异。使用数值方法研究了两种燃烧器尺度下纳米粒子的形成和生长。特别关注了高温颗粒停留时间(HTPRT)。值得注意的是,尽管两种燃烧器的几何尺度和设计大不相同,但颗粒在燃烧器中经历的平均温度-时间曲线几乎完全相同。模拟结果表明,虽然主要颗粒直径基本保持一致,但中试规模燃烧器产生的颗粒团聚体要大于实验室燃烧器。造成这种差异的原因是,在软团聚体的初始形成过程中,颗粒数量浓度增加了。研究结果表明,尽管 HTPRT 保持相似,但总体流动条件和液体喷雾分散会影响颗粒数浓度的分布,从而影响最终团聚体的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Machine learning enhanced time-resolved multi-particle tracking velocimetry in solid fuel particle group combustion Accelerating mixing controlled turbulent combustion simulations with hybrid Navier–Stokes/ANN scalar-solvers Role of pocket formation in the extinction of methane flames subject to strong turbulence Research progress on thermochemical conversion technologies for hydrogen production from waste plastics So, you want to measure flare emissions? Challenges and opportunities for quantifying utility pipe flare performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1