P. Chakraborty , R.K. Chittela , S. Samal , A. Sarkar , A.V.S.S.N. Rao , S. Neogy , R. Tewari
{"title":"Investigating the cyto-compatibility of ZrNbVTiAl high entropy alloy","authors":"P. Chakraborty , R.K. Chittela , S. Samal , A. Sarkar , A.V.S.S.N. Rao , S. Neogy , R. Tewari","doi":"10.1016/j.jalmes.2024.100076","DOIUrl":null,"url":null,"abstract":"<div><p>An investigation was carried out to assess the suitability of equiatomic ZrNbVTiAl high-entropy alloy (HEA) for biomedical applications. This included microstructural analysis, mechanical property evaluation and in–vivo testing in biological media to examine its cyto-compatibility. The alloy developed a dendritic structure on solidification through arc melting, with BCC –B2 type dendrites separated by inter-dendritic regions rich in Al and Zr. The evolved microstructure and composition matched well with those predicted by the phase field modelling. The HEA also showed a high yield strength (1045 MPa) and moderate elastic modulus (120 GPa) comparable to the commonly used biomedical alloy, Ti-6Al-4 V. Cell culture studies with U2OS Cells showed substantial attachment and growth of healthy osteoblasts to the HEA as well as negligible bio-corrosion after 45 days of exposure. Most importantly, the alloy showed a significantly high tendency of cell attachment than pure Ti and lower magnetic susceptibility (2.55 ×10<sup>−6</sup> cm<sup>3</sup>/g) than Ti-6Al-4 V alloy indicating its suitability for biomedical applications.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"6 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000233/pdfft?md5=fe226a4c6d94d80f4d11c08a5904b07e&pid=1-s2.0-S2949917824000233-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An investigation was carried out to assess the suitability of equiatomic ZrNbVTiAl high-entropy alloy (HEA) for biomedical applications. This included microstructural analysis, mechanical property evaluation and in–vivo testing in biological media to examine its cyto-compatibility. The alloy developed a dendritic structure on solidification through arc melting, with BCC –B2 type dendrites separated by inter-dendritic regions rich in Al and Zr. The evolved microstructure and composition matched well with those predicted by the phase field modelling. The HEA also showed a high yield strength (1045 MPa) and moderate elastic modulus (120 GPa) comparable to the commonly used biomedical alloy, Ti-6Al-4 V. Cell culture studies with U2OS Cells showed substantial attachment and growth of healthy osteoblasts to the HEA as well as negligible bio-corrosion after 45 days of exposure. Most importantly, the alloy showed a significantly high tendency of cell attachment than pure Ti and lower magnetic susceptibility (2.55 ×10−6 cm3/g) than Ti-6Al-4 V alloy indicating its suitability for biomedical applications.