Zong Yang Kong , Eduardo Sánchez-Ramírez , Jia Yi Sim , Jaka Sunarso , Juan Gabriel Segovia-Hernández
{"title":"The importance of process intensification in undergraduate chemical engineering education","authors":"Zong Yang Kong , Eduardo Sánchez-Ramírez , Jia Yi Sim , Jaka Sunarso , Juan Gabriel Segovia-Hernández","doi":"10.1016/j.dche.2024.100152","DOIUrl":null,"url":null,"abstract":"<div><p>This perspective article highlights our opinions on the imperative of incorporating Process Intensification (PI) into undergraduate chemical engineering education, recognizing its pivotal role in preparing future engineers for contemporary industrial challenges. The trajectory of PI, from historical milestones to its significance in advancing the United Nations’ Sustainable Development Goals (SDGs), reflects its intrinsic alignment with sustainability, resource efficiency, and environmental stewardship. Despite its critical relevance, the absence of dedicated PI courses in numerous undergraduate chemical engineering programs presents an opportunity for educational enhancement. An exploration of global PI-related courses reveals the potential of educational platforms to fill this void. To address this gap, we advocate for the introduction of a standalone PI course as a minor elective, minimizing disruptions to established curricula while acknowledging the scarcity of PI expertise. The challenges associated with PI integration encompass faculty workload, specialized expertise, curriculum content standardization, and industry alignment. Surmounting these challenges necessitates collaborative efforts among academia, industry stakeholders, and policymakers, emphasizing the manifold benefits of PI, faculty development initiatives, and the establishment of continuous improvement mechanisms. The incorporation of PI into curricula signifies a transformative approach, cultivating a cadre of innovative engineers poised to meet the demands of the evolving industrial landscape.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"11 ","pages":"Article 100152"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000140/pdfft?md5=e5a9fa940af190b7644b1883fa862288&pid=1-s2.0-S2772508124000140-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective article highlights our opinions on the imperative of incorporating Process Intensification (PI) into undergraduate chemical engineering education, recognizing its pivotal role in preparing future engineers for contemporary industrial challenges. The trajectory of PI, from historical milestones to its significance in advancing the United Nations’ Sustainable Development Goals (SDGs), reflects its intrinsic alignment with sustainability, resource efficiency, and environmental stewardship. Despite its critical relevance, the absence of dedicated PI courses in numerous undergraduate chemical engineering programs presents an opportunity for educational enhancement. An exploration of global PI-related courses reveals the potential of educational platforms to fill this void. To address this gap, we advocate for the introduction of a standalone PI course as a minor elective, minimizing disruptions to established curricula while acknowledging the scarcity of PI expertise. The challenges associated with PI integration encompass faculty workload, specialized expertise, curriculum content standardization, and industry alignment. Surmounting these challenges necessitates collaborative efforts among academia, industry stakeholders, and policymakers, emphasizing the manifold benefits of PI, faculty development initiatives, and the establishment of continuous improvement mechanisms. The incorporation of PI into curricula signifies a transformative approach, cultivating a cadre of innovative engineers poised to meet the demands of the evolving industrial landscape.
本视角文章强调了我们对将过程强化(PI)纳入化学工程本科教育的必要性的看法,认识到其在培养未来工程师应对当代工业挑战方面的关键作用。从历史里程碑到在推进联合国可持续发展目标(SDGs)方面的重要意义,过程强化的发展轨迹反映了其与可持续发展、资源效率和环境管理的内在一致性。尽管 PI 至关重要,但许多本科化学工程专业都没有专门的 PI 课程,这为加强教育提供了机会。对全球 PI 相关课程的探索揭示了教育平台填补这一空白的潜力。为了弥补这一空白,我们主张开设一门独立的 PI 课程,作为辅修选修课,在承认 PI 专业人才稀缺的同时,尽量减少对既定课程的干扰。与 PI 整合相关的挑战包括教师工作量、专业知识、课程内容标准化和行业协调。要克服这些挑战,需要学术界、行业利益相关者和政策制定者通力合作,强调 PI 的多方面益处、教师发展计划和建立持续改进机制。将 PI 纳入课程意味着一种变革性的方法,可以培养一批创新型工程师,以满足不断发展的工业环境的需求。