Orbital modulation in platinum-group-metal (PGM) electrocatalysts: An effective approach to boost catalytic performance

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2025-03-01 DOI:10.1016/j.esci.2024.100270
Xuan Liu , Gang Wu , Qing Li
{"title":"Orbital modulation in platinum-group-metal (PGM) electrocatalysts: An effective approach to boost catalytic performance","authors":"Xuan Liu ,&nbsp;Gang Wu ,&nbsp;Qing Li","doi":"10.1016/j.esci.2024.100270","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum group metal (PGM) electrocatalysts play an irreplaceable role in many electrochemical reactions for sustainable energy conversion. In the past few decades, the electronic orbital modulation methods have emerged as an important way to produce high-performance electrocatalysts, often by adjusting surface reactivity and enhancing structural stability. In this review, we first systematically elaborate on the basic principles and strategies of orbital modulation for PGM-based catalysts, mainly from the perspective of improving activity and stability, in which we highlight some exploratory theoretical studies over the past few decades. Then we describe a series of representative works to elucidate the specific approaches used to realize precise orbital modulation in PGM catalysts. Finally, we clarify the existing challenges and propose some perspectives for the development of related theories and practical applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 2","pages":"Article 100270"},"PeriodicalIF":42.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum group metal (PGM) electrocatalysts play an irreplaceable role in many electrochemical reactions for sustainable energy conversion. In the past few decades, the electronic orbital modulation methods have emerged as an important way to produce high-performance electrocatalysts, often by adjusting surface reactivity and enhancing structural stability. In this review, we first systematically elaborate on the basic principles and strategies of orbital modulation for PGM-based catalysts, mainly from the perspective of improving activity and stability, in which we highlight some exploratory theoretical studies over the past few decades. Then we describe a series of representative works to elucidate the specific approaches used to realize precise orbital modulation in PGM catalysts. Finally, we clarify the existing challenges and propose some perspectives for the development of related theories and practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铂族金属(PGM)电催化剂中的轨道调制:提高催化性能的有效方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Orbital modulation in platinum-group-metal (PGM) electrocatalysts: An effective approach to boost catalytic performance Strategies of constructing highly stable interfaces with low resistance in inorganic oxide-based solid-state lithium batteries Hydrogel polymer electrolytes toward better zinc-ion batteries: A comprehensive review Development of noble metal-free electrocatalysts towards acidic water oxidation: From fundamental understanding to state-of-the-art catalysts Selective contact self-assembled molecules for high-performance perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1