{"title":"Neuromodulation with chemicals: Opportunities and challenges","authors":"Yifei Pan , Cong Pan , Lanqun Mao , Ping Yu","doi":"10.1016/j.fmre.2024.04.010","DOIUrl":null,"url":null,"abstract":"<div><div>Chemicals play a crucial role in neurophysiological and neuropathological processes. By regulating the concentration of specific chemicals, receptors on the neuron cell membrane can be modulated to activate or inhibit, thereby influencing specific ion channels and facilitating neuromodulation. This review introduces several chemical modulation techniques, such as microinjection, electrode/nanoparticle-based chemical delivery methods, <em>in situ</em> electrochemical synthesis and chemogenetics. While these techniques show promise in expanding the application of chemical neuromodulation, they currently exhibit different degrees of shortcomings and room for improvement. This review summarizes the opportunities and challenges for chemical neuromodulation methods and provide an outlook for their prospects in the future.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 1","pages":"Pages 55-62"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824001547","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Chemicals play a crucial role in neurophysiological and neuropathological processes. By regulating the concentration of specific chemicals, receptors on the neuron cell membrane can be modulated to activate or inhibit, thereby influencing specific ion channels and facilitating neuromodulation. This review introduces several chemical modulation techniques, such as microinjection, electrode/nanoparticle-based chemical delivery methods, in situ electrochemical synthesis and chemogenetics. While these techniques show promise in expanding the application of chemical neuromodulation, they currently exhibit different degrees of shortcomings and room for improvement. This review summarizes the opportunities and challenges for chemical neuromodulation methods and provide an outlook for their prospects in the future.