Yinjie Liang , Junjia Guo , Zhen Li , Shiyuan Liu , Ting Zhang , Shucai Sun , Funa Lu , Yuqian Zhai , Wenling Wang , Chuanyi Ning , Wenjie Tan
{"title":"A novel method to assess antibody-dependent cell-mediated cytotoxicity against influenza A virus M2 in immunized murine models","authors":"Yinjie Liang , Junjia Guo , Zhen Li , Shiyuan Liu , Ting Zhang , Shucai Sun , Funa Lu , Yuqian Zhai , Wenling Wang , Chuanyi Ning , Wenjie Tan","doi":"10.1016/j.bsheal.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The matrix protein 2 (M2) is a preferred target for developing a universal vaccine against the influenza A virus (IAV). This study aimed to develop a method for assessing antibody-dependent cell-mediated cytotoxicity (ADCC) associated with M2-based immunization in mice. We first established a stable cell line derived from mouse lymphoma cells (YAC-1) expressing M2 of H3N2. This cell line, designated as YAC-1-M2, was generated using a second-generation lentiviral tricistronic plasmid system to transduce the <em>M2</em> gene into YAC-1 cells. The ADCC effect induced by polyclonal antibodies targeting matrix protein 2 ectodomain (M2e) was demonstrated by YAC-1-M2 cell lysis by natural killer cells (NK) derived from mice, in the presence of anti-M2 antibodies obtained from mice immunized with an mRNA vaccine based on M2e. This ADCC effect was found to be stronger compared to the effect induced by monoclonal antibodies (14C2) against M2. Moreover, the ADCC effect was enhanced as the effector-to-target ratio of NK to YAC-1-M2 cells increased. In conclusion, we established a novel method to detect ADCC of M2 of IAV, which paves the way for the development of an M2-based universal vaccine against IAV and an in-depth analysis of its mechanism of broad-spectrum immune protection in mice.</p></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":"6 3","pages":"Pages 178-185"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590053624000521/pdfft?md5=633e7d024daae893dd871a5c85ddc447&pid=1-s2.0-S2590053624000521-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053624000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The matrix protein 2 (M2) is a preferred target for developing a universal vaccine against the influenza A virus (IAV). This study aimed to develop a method for assessing antibody-dependent cell-mediated cytotoxicity (ADCC) associated with M2-based immunization in mice. We first established a stable cell line derived from mouse lymphoma cells (YAC-1) expressing M2 of H3N2. This cell line, designated as YAC-1-M2, was generated using a second-generation lentiviral tricistronic plasmid system to transduce the M2 gene into YAC-1 cells. The ADCC effect induced by polyclonal antibodies targeting matrix protein 2 ectodomain (M2e) was demonstrated by YAC-1-M2 cell lysis by natural killer cells (NK) derived from mice, in the presence of anti-M2 antibodies obtained from mice immunized with an mRNA vaccine based on M2e. This ADCC effect was found to be stronger compared to the effect induced by monoclonal antibodies (14C2) against M2. Moreover, the ADCC effect was enhanced as the effector-to-target ratio of NK to YAC-1-M2 cells increased. In conclusion, we established a novel method to detect ADCC of M2 of IAV, which paves the way for the development of an M2-based universal vaccine against IAV and an in-depth analysis of its mechanism of broad-spectrum immune protection in mice.