Symbolic Integration Algorithm Selection with Machine Learning: LSTMs vs Tree LSTMs

Rashid Barket, Matthew England, Jürgen Gerhard
{"title":"Symbolic Integration Algorithm Selection with Machine Learning: LSTMs vs Tree LSTMs","authors":"Rashid Barket, Matthew England, Jürgen Gerhard","doi":"arxiv-2404.14973","DOIUrl":null,"url":null,"abstract":"Computer Algebra Systems (e.g. Maple) are used in research, education, and\nindustrial settings. One of their key functionalities is symbolic integration,\nwhere there are many sub-algorithms to choose from that can affect the form of\nthe output integral, and the runtime. Choosing the right sub-algorithm for a\ngiven problem is challenging: we hypothesise that Machine Learning can guide\nthis sub-algorithm choice. A key consideration of our methodology is how to\nrepresent the mathematics to the ML model: we hypothesise that a representation\nwhich encodes the tree structure of mathematical expressions would be well\nsuited. We trained both an LSTM and a TreeLSTM model for sub-algorithm\nprediction and compared them to Maple's existing approach. Our TreeLSTM\nperforms much better than the LSTM, highlighting the benefit of using an\ninformed representation of mathematical expressions. It is able to produce\nbetter outputs than Maple's current state-of-the-art meta-algorithm, giving a\nstrong basis for further research.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computer Algebra Systems (e.g. Maple) are used in research, education, and industrial settings. One of their key functionalities is symbolic integration, where there are many sub-algorithms to choose from that can affect the form of the output integral, and the runtime. Choosing the right sub-algorithm for a given problem is challenging: we hypothesise that Machine Learning can guide this sub-algorithm choice. A key consideration of our methodology is how to represent the mathematics to the ML model: we hypothesise that a representation which encodes the tree structure of mathematical expressions would be well suited. We trained both an LSTM and a TreeLSTM model for sub-algorithm prediction and compared them to Maple's existing approach. Our TreeLSTM performs much better than the LSTM, highlighting the benefit of using an informed representation of mathematical expressions. It is able to produce better outputs than Maple's current state-of-the-art meta-algorithm, giving a strong basis for further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习选择符号集成算法:LSTM 与树状 LSTM
计算机代数系统(如 Maple)广泛应用于研究、教育和工业领域。它们的主要功能之一是符号积分,其中有许多子算法可供选择,这些算法会影响输出积分的形式和运行时间。为特定问题选择合适的子算法具有挑战性:我们假设机器学习可以指导子算法的选择。我们的方法论的一个关键考虑因素是如何向机器学习模型表示数学:我们假设,对数学表达式的树形结构进行编码的表示方法将非常适合。我们训练了一个 LSTM 模型和一个 TreeLSTM 模型来进行亚算法预测,并将它们与 Maple 的现有方法进行了比较。我们的 TreeLSTM 比 LSTM 的表现要好得多,这凸显了使用数学表达式的知情表示法的好处。它能够产生比 Maple 目前最先进的元算法更好的输出结果,为进一步的研究奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1