Minimization of Particle Deposition on Wafers Caused by the Pressure Change in the Vacuum Chamber Through a Pressure Control Regulation Process

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-04-26 DOI:10.1109/TSM.2024.3394008
Ching-Ming Ku;Wen Yea Jang;Stone Cheng
{"title":"Minimization of Particle Deposition on Wafers Caused by the Pressure Change in the Vacuum Chamber Through a Pressure Control Regulation Process","authors":"Ching-Ming Ku;Wen Yea Jang;Stone Cheng","doi":"10.1109/TSM.2024.3394008","DOIUrl":null,"url":null,"abstract":"In wafer etching, regular cleaning and maintenance of process chambers are necessary to reduce particle contamination of etched wafers during the wafer transfer process. Investigating alternative cleaning and maintenance is imperative. This study analyzed the number of particles falling onto a silicon wafer when the pressure difference within the process chamber was manipulated. We observed that rapid opening of the pressure control valve, which regulates the chamber’s pressure, caused contamination during wafer transport. This was particularly true when the change in the pressure ratio was considerable. The by-products near the side of the chamber’s pressure control valve were activated and transported. We verified this finding by adjusting the opening ratio of the pressure control valve (i.e., its degree of opening). We proposed that during the transition step of the etching process, this opening ratio can be controlled by regulating the process pressure through gas flow settings. This method could suppress the deposition of reflected particles originating from the turbomolecular pump’s pumping line on wafers, thereby minimizing the contamination of wafers.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10509606/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In wafer etching, regular cleaning and maintenance of process chambers are necessary to reduce particle contamination of etched wafers during the wafer transfer process. Investigating alternative cleaning and maintenance is imperative. This study analyzed the number of particles falling onto a silicon wafer when the pressure difference within the process chamber was manipulated. We observed that rapid opening of the pressure control valve, which regulates the chamber’s pressure, caused contamination during wafer transport. This was particularly true when the change in the pressure ratio was considerable. The by-products near the side of the chamber’s pressure control valve were activated and transported. We verified this finding by adjusting the opening ratio of the pressure control valve (i.e., its degree of opening). We proposed that during the transition step of the etching process, this opening ratio can be controlled by regulating the process pressure through gas flow settings. This method could suppress the deposition of reflected particles originating from the turbomolecular pump’s pumping line on wafers, thereby minimizing the contamination of wafers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过压力控制调节过程最大限度地减少真空室压力变化在晶片上造成的颗粒沉积
在晶片蚀刻过程中,必须定期清洁和维护制程室,以减少晶片传送过程中蚀刻晶片的颗粒污染。研究清洁和维护的替代方法势在必行。本研究分析了当工艺腔内的压力差被操纵时,落在硅晶片上的颗粒数量。我们观察到,在硅片传输过程中,快速打开用于调节腔室压力的压力控制阀会造成污染。当压力比变化很大时,情况尤其如此。靠近腔室压力控制阀一侧的副产品被激活并传送。我们通过调整压力控制阀的开启率(即开启程度)验证了这一发现。我们提出,在蚀刻过程的过渡步骤中,可以通过气体流量设置来调节工艺压力,从而控制压力控制阀的打开比例。这种方法可以抑制来自涡轮分子泵抽气管路的反射粒子在晶片上的沉积,从而最大限度地减少对晶片的污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Overlay Measurement Algorithm for Moirè Targets Using Frequency Analysis Performance Evaluation of Supervised Learning Model Based on Functional Data Analysis and Summary Statistics Machine Learning Based Universal Threshold Voltage Extraction of Transistors Using Convolutional Neural Networks A Novel Multi-Modal Learning Approach for Cross-Process Defect Classification in TFT-LCD Array Manufacturing Feature Extraction From Diffraction Images Using a Spatial Light Modulator in Scatterometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1