{"title":"Short-homology-mediated PCR-based method for gene introduction in the fission yeast Schizosaccharomyces pombe","authors":"Cai-Xia Zhang, Ying-Chun Hou","doi":"10.1093/bfgp/elae016","DOIUrl":null,"url":null,"abstract":"Schizosaccharomyces pombe is a commonly utilized model organism for studying various aspects of eukaryotic cell physiology. One reason for its widespread use as an experimental system is the ease of genetic manipulations, leveraging the natural homology-targeted repair mechanism to accurately modify the genome. We conducted a study to assess the feasibility and efficiency of directly introducing exogenous genes into the fission yeast S. pombe using Polymerase Chain Reaction (PCR) with short-homology flanking sequences. Specifically, we amplified the NatMX6 gene (which provides resistance to nourseothricin) using PCR with oligonucleotides that had short flanking regions of 20 bp, 40 bp, 60 bp and 80 bp to the target gene. By using this purified PCR product, we successfully introduced the NatMX6 gene at position 171 385 on chromosome III in S. pombe. We have made a simple modification to the transformation procedure, resulting in a significant increase in transformation efficiency by at least 5-fold. The success rate of gene integration at the target position varied between 20% and 50% depending on the length of the flanking regions. Additionally, we discovered that the addition of dimethyl sulfoxide and boiled carrier DNA increased the number of transformants by ~60- and 3-fold, respectively. Furthermore, we found that the removal of the pku70+ gene improved the transformation efficiency to ~5% and reduced the formation of small background colonies. Overall, our results demonstrate that with this modified method, even very short stretches of homologous regions (as short as 20 bp) can be used to effectively target genes at a high frequency in S. pombe. This finding greatly facilitates the introduction of exogenous genes in this organism.","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"58 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Schizosaccharomyces pombe is a commonly utilized model organism for studying various aspects of eukaryotic cell physiology. One reason for its widespread use as an experimental system is the ease of genetic manipulations, leveraging the natural homology-targeted repair mechanism to accurately modify the genome. We conducted a study to assess the feasibility and efficiency of directly introducing exogenous genes into the fission yeast S. pombe using Polymerase Chain Reaction (PCR) with short-homology flanking sequences. Specifically, we amplified the NatMX6 gene (which provides resistance to nourseothricin) using PCR with oligonucleotides that had short flanking regions of 20 bp, 40 bp, 60 bp and 80 bp to the target gene. By using this purified PCR product, we successfully introduced the NatMX6 gene at position 171 385 on chromosome III in S. pombe. We have made a simple modification to the transformation procedure, resulting in a significant increase in transformation efficiency by at least 5-fold. The success rate of gene integration at the target position varied between 20% and 50% depending on the length of the flanking regions. Additionally, we discovered that the addition of dimethyl sulfoxide and boiled carrier DNA increased the number of transformants by ~60- and 3-fold, respectively. Furthermore, we found that the removal of the pku70+ gene improved the transformation efficiency to ~5% and reduced the formation of small background colonies. Overall, our results demonstrate that with this modified method, even very short stretches of homologous regions (as short as 20 bp) can be used to effectively target genes at a high frequency in S. pombe. This finding greatly facilitates the introduction of exogenous genes in this organism.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.